HAND POSE RECOGNITION USING BOOSTED LOOK UP TABLES
    1.
    发明申请
    HAND POSE RECOGNITION USING BOOSTED LOOK UP TABLES 审中-公开
    使用增强型手表来掌握识别

    公开(公告)号:US20150138078A1

    公开(公告)日:2015-05-21

    申请号:US14546750

    申请日:2014-11-18

    摘要: Pose and gesture detection and classification of a human poses and gestures using a discriminative ferns ensemble classifier is provided. Sample image data in one or more channels includes a human image. A processing device operates on the sample image data using the discriminative ferns ensemble classifier. The classifier has set of classification tables and matching bit features (ferns) which are developed using a first set of training data and optimized by a weighting of the tables using an SVM linear classifier configured based on the first or a second set of pose training data. The tables allow computation of a score per pose class for the image in the sample data and the processor outputs a determination of the pose in the sample depth image data. The determination enables the manipulation of a natural user interface.

    摘要翻译: 提供了使用歧视蕨类集合分类器的姿态和手势检测和人类姿势和手势的分类。 一个或多个通道中的样本图像数据包括人类图像。 处理装置使用鉴别蕨类集合分类器对样本图像数据进行操作。 分类器具有使用第一组训练数据开发的分类表和匹配比特特征(蕨类)的集合,并且使用基于第一或第二组姿势训练数据配置的SVM线性分类器通过对表的加权进行优化 。 这些表允许计算采样数据中的图像的每个姿态等级的分数,并且处理器输出样本深度图像数据中姿态的确定。 该确定使得能够操纵自然的用户界面。