Combined torque, direction, and cadence sensing system for electric bicycles

    公开(公告)号:US10858059B2

    公开(公告)日:2020-12-08

    申请号:US16449429

    申请日:2019-06-23

    摘要: A unitary system for an electric-assist bicycle generates signals indicative of power input to a drive system of the bicycle when a rider pedals the bicycle, considering torque applied by the rider, as well as the cadence or speed of the rider's pedaling. Direction of pedaling is also measured using the system. The system utilizes fixed, hard-wired, contactless electronics, namely first and second inductance coils that are non-equally-spaced circumferentially around a first axis, and which generate a first electrical signal indicative of torque based on lateral movement of a conductive or otherwise magnetically permeable rotatable member relative to the coils, and which generate second and third electrical signals indicative of pedaling cadence and direction based on eccentric relative rotational movement of the conductive or otherwise magnetically permeable rotatable member relative to the first and second inductance coils.

    Combined Torque, Direction, and Cadence Sensing System for Electric Bicycles

    公开(公告)号:US20190308686A1

    公开(公告)日:2019-10-10

    申请号:US16449429

    申请日:2019-06-23

    摘要: A unitary system for an electric-assist bicycle generates signals indicative of power input to a drive system of the bicycle when a rider pedals the bicycle, considering torque applied by the rider, as well as the cadence or speed of the rider's pedaling. Direction of pedaling is also measured using the system. The system utilizes fixed, hard-wired, contactless electronics, namely first and second inductance coils that are non-equally-spaced circumferentially around a first axis, and which generate a first electrical signal indicative of torque based on lateral movement of a conductive or otherwise magnetically permeable rotatable member relative to the coils, and which generate second and third electrical signals indicative of pedaling cadence and direction based on eccentric relative rotational movement of the conductive or otherwise magnetically permeable rotatable member relative to the first and second inductance coils.