-
1.
公开(公告)号:US20110274361A1
公开(公告)日:2011-11-10
申请号:US13104801
申请日:2011-05-10
申请人: Alan Bovik , Anush Moorthy
发明人: Alan Bovik , Anush Moorthy
IPC分类号: G06K9/62
CPC分类号: G06T7/0002 , G06K9/00664 , G06K9/00711 , G06K9/036 , G06T2207/10016 , G06T2207/20081 , G06T2207/30168
摘要: Techniques and structures are disclosed in which one or more distortion categories are identified for an image or video, and a quality of the image or video is determined based on the one or more distortion categories. The image or video may be of a natural scene, and may be of unknown provenance. Identifying a distortion category and/or determining a quality may be performed without any corresponding reference (e.g., undistorted) image or video. Identifying a distortion category may be performed using a distortion classifier. Quality may be determined with respect to a plurality of human opinion scores that correspond to a particular distortion category to which an image or video of unknown provenance is identified as belonging. Various statistical methods may be used in performing said identifying and said determining, including use of generalized Gaussian distribution density models and natural scene statistics.
摘要翻译: 公开了一种技术和结构,其中为图像或视频识别一个或多个失真类别,并且基于一个或多个失真类别确定图像或视频的质量。 图像或视频可能是自然场景,可能是未知的来源。 可以执行识别失真类别和/或确定质量,而没有任何相应的参考(例如,未失真)的图像或视频。 可以使用失真分类器来识别失真类别。 可以针对与未知来源的图像或视频被识别为属于的特定失真类别相对应的多个人意见分数来确定质量。 可以使用各种统计方法来执行所述识别和所述确定,包括使用广义高斯分布密度模型和自然场景统计。
-
2.
公开(公告)号:US08660372B2
公开(公告)日:2014-02-25
申请号:US13104801
申请日:2011-05-10
申请人: Alan Bovik , Anush Moorthy
发明人: Alan Bovik , Anush Moorthy
CPC分类号: G06T7/0002 , G06K9/00664 , G06K9/00711 , G06K9/036 , G06T2207/10016 , G06T2207/20081 , G06T2207/30168
摘要: Techniques and structures are disclosed in which one or more distortion categories are identified for an image or video, and a quality of the image or video is determined based on the one or more distortion categories. The image or video may be of a natural scene, and may be of unknown provenance. Identifying a distortion category and/or determining a quality may be performed without any corresponding reference (e.g., undistorted) image or video. Identifying a distortion category may be performed using a distortion classifier. Quality may be determined with respect to a plurality of human opinion scores that correspond to a particular distortion category to which an image or video of unknown provenance is identified as belonging. Various statistical methods may be used in performing said identifying and said determining, including use of generalized Gaussian distribution density models and natural scene statistics.
摘要翻译: 公开了一种技术和结构,其中为图像或视频识别一个或多个失真类别,并且基于一个或多个失真类别确定图像或视频的质量。 图像或视频可能是自然场景,可能是未知的来源。 可以执行识别失真类别和/或确定质量,而没有任何相应的参考(例如,未失真)的图像或视频。 可以使用失真分类器来识别失真类别。 可以针对与未知来源的图像或视频被识别为属于的特定失真类别相对应的多个人意见分数来确定质量。 可以使用各种统计方法来执行所述识别和所述确定,包括使用广义高斯分布密度模型和自然场景统计。
-