Abstract:
A dual-band antenna is disclosed, comprising a radiating body, a shorting element, and a feeding element. The radiating body comprises a plurality of radiating portions located in a first, a second, a third, and a fourth planes, respectively. The shorting element and the feeding element both extend from the radiating body and are located in the first plane. The radiating portions located in the first, the second, and the third planes transmit and/or receive signals in a first frequency band. The radiating portions located in the first, the second, and the fourth planes transmit and/or receive signals in a second frequency band. A first angle between the first and the second planes, a second angle between the second and the third planes, and a third angle between the second and the fourth planes range between 80 degrees to 100 degrees.
Abstract:
A dual-band antenna is disclosed, comprising a radiating body, a shorting element, and a feeding element. The radiating body comprises a plurality of radiating portions located in a first, a second, a third, and a fourth planes, respectively. The shorting element and the feeding element both extend from the radiating body and are located in the first plane. The radiating portions located in the first, the second, and the third planes transmit and/or receive signals in a first frequency band. The radiating portions located in the first, the second, and the fourth planes transmit and/or receive signals in a second frequency band. A first angle between the first and the second planes, a second angle between the second and the third planes, and a third angle between the second and the fourth planes range between 80 degrees to 100 degrees.
Abstract:
Multiple out-of-plane planar reflectors can be used to build a receive/transmit high-gain directional antenna. The driver portion and the first reflector of the antenna are formed within a metal layer of a PWB. A plurality of sets of reflector plates can be placed on the PWB, on a non-conductive low-dielectric constant material coating both opposing planar surfaces of the PWB, or on the opposing sidewalls of the product housing unit. The metal layer in the PWB is placed between the reflector plates. The plates can have either a parallel or non-parallel orientation to each another. This greatly increase the received power and thus increases the operating range of a low-power UWB system, as well as significantly improves wireless data transmission throughput. This antenna is applicable for USB communications systems.