Systems and methods that utilize machine learning algorithms to facilitate assembly of aids vaccine cocktails
    1.
    发明授权
    Systems and methods that utilize machine learning algorithms to facilitate assembly of aids vaccine cocktails 有权
    利用机器学习算法方便装配疫苗鸡尾酒的系统和方法

    公开(公告)号:US08478535B2

    公开(公告)日:2013-07-02

    申请号:US11324506

    申请日:2005-12-30

    IPC分类号: G01N33/50

    摘要: The subject invention provides systems and methods that facilitate AIDS vaccine cocktail assembly via machine learning algorithms such as a cost function, a greedy algorithm, an expectation-maximization (EM) algorithm, etc. Such assembly can be utilized to generate vaccine cocktails for species of pathogens that evolve quickly under immune pressure of the host. For example, the systems and methods of the subject invention can be utilized to facilitate design of T cell vaccines for pathogens such HIV. In addition, the systems and methods of the subject invention can be utilized in connection with other applications, such as, for example, sequence alignment, motif discovery, classification, and recombination hot spot detection. The novel techniques described herein can provide for improvements over traditional approaches to designing vaccines by constructing vaccine cocktails with higher epitope coverage, for example, in comparison with cocktails of consensi, tree nodes and random strains from data.

    摘要翻译: 本发明提供了通过诸如成本函数,贪心算法,期望最大化(EM)算法等机器学习算法来促进艾滋病疫苗鸡尾酒组合的系统和方法。可以利用这种装配来产生疫苗鸡尾酒, 在宿主免疫压力下快速发展的病原体。 例如,本发明的系统和方法可以用于促进用于诸如HIV的病原体的T细胞疫苗的设计。 此外,本发明的系统和方法可以与其他应用相结合使用,例如序列比对,基序发现,分类和重组热点检测。 本文所述的新颖技术可以提供改进,以通过构建具有较高表位覆盖度的疫苗混合物来设计疫苗的传统方法,例如与来自数据的共同体,树节点和随机菌株的鸡尾酒相比。