摘要:
A hydrometallurgical process for the recovery of nickel and cobalt values from a sulfidic flotation concentrate. The process involves forming a slurry of the sulfidic flotation concentrate in an acid solution, and subjecting the slurried flotation concentrate to a chlorine leach at atmospheric pressure followed by an oxidative pressure leach. After liquid-solids separation and purification of the concentrate resulting in the removal of copper and cobalt, the nickel-containing solution is directly treated by electrowinning to recover nickel cathode therefrom.
摘要:
An acidic aqueous electrolyte solution for production of a nickel cathode is provided which includes nickel ions, and 2,5-dimethyl-3-hexyne-2,5-diol. The 2,5-dimethyl-3-hexyne-2,5-diol may be present in the acidic aqueous electrolyte solution in an amount ranging from about 5 ppm to about 300 ppm. Also provided is a process for electrowinning or electrorefining a nickel cathode which includes providing an acidic aqueous electrolyte solution including nickel ions, and 2,5-dimethyl-3-hexyne-2,5-diol; and electrolytically depositing nickel to form a nickel cathode. Addition of 2,5-dimethyl-3-hexyne-2,5-diol results in a reduction of striations and other defects which may occur on the surface of cathodes made by electrowinning or electrorefining.
摘要:
A hydrometallurgical process for the recovery of nickel and cobalt values from a sulfidic flotation concentrate. The process involves forming a slurry of the sulfidic flotation concentrate in an acid solution, and subjecting the slurried flotation concentrate to a chlorine leach at atmospheric pressure followed by an oxidative pressure leach. After liquid-solids separation and purification of the concentrate resulting in the removal of copper and cobalt, the nickel-containing solution is directly treated by electrowinning to recover nickel cathode therefrom.
摘要:
The invention provides a method of regenerating dithiophosphorus extractants such as dithiophosphoric acids, dithiophosphonic acids and dithiophosphinic acids from their sulfur-sulfur bonded oxidation products contained in an organic solution. The process generates active hydrogen for regenerating the spent dithiophosphorus extractants. Advantageously, this active hydrogen originates either from introducing a reactive metal into a liquid mixture containing the organic solution and an acidic aqueous solution to form nascent hydrogen or from using hydrogen gas in the presence of a catalyst in the organic solution. The active hydrogen generated in the process breaks the sulfur-sulfur bonds of the dithiophosphorus molecules to form the corresponding dithiophosphorus acids.