Abstract:
A circuit for controlling pulsed current to a load, one application of which is in LED dimmer circuitry, comprises first and second reference nodes for receiving a supply voltage, an input node for receiving a timing signal such as a PWM signal, and a controlled switch coupled between the first and second reference voltage nodes for supplying current to the load. Pull-up circuitry may be coupled between a control electrode of the controlled switch and first reference voltage node, and a pull-down switch coupled between the control electrode and second reference voltage node. A control circuit coupled between the input node and control electrode of the controlled switch is configured to control the controlled switch in response to the timing signal. The circuit may further include a reference voltage source configured for producing a voltage of magnitude independent of supply voltage magnitude. The control circuit is coupled to the reference voltage source and operative to control the controlled switch in response to the timing signal and reference voltage.
Abstract:
An accurate, low voltage, low parts-count current sense amplifier can be employed to sense either high side or low side currents. A pair of transistors are connected in a common-base configuration and biased with equal currents, with a sense resistor connected between their respective emitter circuits. A sensed current develops a voltage across the sense resistor which unbalances the transistor currents. A third transistor is connected to provide a feedback current to detect and correct the current imbalance; the feedback current is directly proportional to the sensed current, and serves as the current sense amplifier's output. The current sense amplifier requires only three transistors, can be realized with bipolar or FET devices of either polarity, and can operate at supply voltages as low as about 1.1 volts.