Image-wide artifacts reduction caused by high attenuating objects in ct deploying voxel tissue class
    1.
    发明授权
    Image-wide artifacts reduction caused by high attenuating objects in ct deploying voxel tissue class 有权
    在ct部署体素组织类中由高衰减对象引起的图像范围的伪影减少

    公开(公告)号:US07636461B2

    公开(公告)日:2009-12-22

    申请号:US10597566

    申请日:2005-01-24

    IPC分类号: G06K9/00

    CPC分类号: G06T11/008 G06T2211/424

    摘要: A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S′). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).

    摘要翻译: 重建处理器(34)将所获取的投影数据(S)重建成未校正的重建图像(T)。 分类算法(66)至少将未校正的重建图像(T)的像素分类为金属,骨骼,组织和空气像素类。 聚类算法(60)迭代地将像素分配给最佳拟合类。 像素替换算法(70)用未被校正的重建图像(T)的金属类像素替换骨密度类别的像素值,以产生无金属图像。 形态学算法(80)将受试者解剖学的先验知识应用于无金属图像,以校正类别区域的形状以产生模型断层图像。 向前投影仪(88)向前投影模型断层图像以产生模型投影数据(Smodel)。 损坏的光线识别算法(100)识别穿过包含金属物体的区域的原始投影数据(S)中的光线。 损坏的光线替换算法(102)将损坏的区域替换为模型投影数据的相应区域,以产生校正投影数据(S')。 重构处理器(34)将经校正的投影数据(S)重建为经校正的重建3D图像(T')。

    Image-Wide Artifacts Reduction Caused by High Attenuating Objects in Ct Deploying Voxel Tissue Class
    2.
    发明申请
    Image-Wide Artifacts Reduction Caused by High Attenuating Objects in Ct Deploying Voxel Tissue Class 有权
    在Ct部署体素组织类中由高度衰减对象引起的图像宽的人工减少

    公开(公告)号:US20080253635A1

    公开(公告)日:2008-10-16

    申请号:US10597566

    申请日:2005-01-24

    IPC分类号: G06T11/00

    CPC分类号: G06T11/008 G06T2211/424

    摘要: A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).

    摘要翻译: 重建处理器(34)将所获取的投影数据(S)重建成未校正的重建图像(T)。 分类算法(66)至少将未校正的重建图像(T)的像素分类为金属,骨骼,组织和空气像素类。 聚类算法(60)迭代地将像素分配给最佳拟合类。 像素替换算法(70)用未被校正的重建图像(T)的金属类像素替换骨密度类别的像素值,以产生无金属图像。 形态学算法(80)将受试者解剖学的先验知识应用于无金属图像,以校正类别区域的形状以产生模型断层图像。 前向投影仪(88)向前投影模型断层图像以产生模型投影数据(S 模型)。 损坏的光线识别算法(100)识别穿过包含金属物体的区域的原始投影数据(S)中的光线。 损坏的光线替换算法(102)将损坏的区域替换为模型投影数据的相应区域,以产生校正的投影数据(S)。 重构处理器(34)将经校正的投影数据(S)重建为经校正的重建3D图像(T')。