摘要:
A rotating shaft drive system is configured to propel a load along a conveying path of an overhead conveyor system. A stationary frame extends along the conveying path and supports the rotating shaft drive system. A movable carriage is suspended from the stationary frame and engages with a rotating shaft of the shaft drive system to propel the carriage and the load. The rotating shaft comprises a plurality of shaft segments supported pillow blocks at each end of the rotating shaft segments, and the pillow blocks create a gap between adjacent shaft segments. The movable carriage has at least one canted driven roller configured to engage with adjacent rotating shaft segments and to create a helical loci of tractional engagement that provides sufficient drive force to propel the carriage and the load along the conveying path. The drive system is further configured to provide continuous propulsion as the canted driven roller moves across the gap between adjacent shaft segments.
摘要:
A slip tube system is configured to transport a load along a conveying path of an overhead conveyor system. A stationary frame has at least one rotating shaft with a shaft axis extending along the conveying path of the stationary frame, and a movable carriage configured to transport a load along the conveying path. A slip tube is placed on at least one of the least one rotating drive shafts and each slip tube has an inner diameter larger than the outer diameter of a respective drive shaft, and is in rotational sliding engagement therewith. At least one driven wheel is attached to the carriage to engage with an exterior of the slip tube surrounding the at least one rotating drive shaft to push the slip tube into driving engagement with the rotating shaft, and to rotate the slip tube therewith. The driven wheels are canted with respect to a shaft axis of the drive shaft and slip tube, and the canted contact produces a helical loci of engagement between the exterior of the slip tube and each of the driven wheels. As the drive shaft rotates, traction is developed between the rotating shaft and an inner surface of the slip tube, and between an outer surface of the rotating slip tube and the driven wheels to provide sufficient drive force to propel the carriage and the load along the conveying path.
摘要:
A rotating shaft drive system is configured to propel a load along a conveying path of an overhead conveyor system. A stationary frame extends along the conveying path and supports the rotating shaft drive system. A movable carriage is suspended from the stationary frame and engages with a rotating shaft of the shaft drive system to propel the carriage and the load. The rotating shaft comprises a plurality of shaft segments supported pillow blocks at each end of the rotating shaft segments, and the pillow blocks create a gap between adjacent shaft segments. The movable carriage has at least one canted driven roller configured to engage with adjacent rotating shaft segments and to create a helical loci of tractional engagement that provides sufficient drive force to propel the carriage and the load along the conveying path. The drive system is further configured to provide continuous propulsion as the canted driven roller moves across the gap between adjacent shaft segments.
摘要:
A slip tube system is configured to transport a load along a conveying path of an overhead conveyor system. A stationary frame has at least one rotating shaft with a shaft axis extending along the conveying path of the stationary frame, and a movable carriage configured to transport a load along the conveying path. A slip tube is placed on at least one of the least one rotating drive shafts and each slip tube has an inner diameter larger than the outer diameter of a respective drive shaft, and is in rotational sliding engagement therewith. At least one driven wheel is attached to the carriage to engage with an exterior of the slip tube surrounding the at least one rotating drive shaft to push the slip tube into driving engagement with the rotating shaft, and to rotate the slip tube therewith. The driven wheels are canted with respect to a shaft axis of the drive shaft and slip tube, and the canted contact produces a helical loci of engagement between the exterior of the slip tube and each of the driven wheels. As the drive shaft rotates, traction is developed between the rotating shaft and an inner surface of the slip tube, and between an outer surface of the rotating slip tube and the driven wheels to provide sufficient drive force to propel the carriage and the load along the conveying path.