Abstract:
An integrated structural system for a vehicle is provided. The integrated structural system includes a molded duct system configured to guide airflow having a first section and a second section and configured to operably attach a vehicle component thereto. The integrated structural system also includes a metal structure integrated with the molded duct system by means for integrating the metal structure with the molded duct system forming an integrated structural load path assembly. The integrated structural load path assembly is configured as a load bearing area to distribute a load of the vehicle component operably attached thereto. The means for integrating the metal structure with said molded duct system include, but not limited to, at least one of, sonic welding, heat staking, insert molding, and gluing.
Abstract:
An integrated structural system for a vehicle is provided. The integrated structural system having a molded duct system configured to guide airflow, the molded duct system having a first section and a second section, the molded duct system configured to provide a supporting surface; and a metal structure, the metal structure integrated with the molded duct system by a means for integrating the metal structure with the molded duct system forming an integrated structural load path assembly, the integrated structural load path assembly being configured as a load bearing area to distribute a load on the supporting surface over the integrated structural load path assembly, wherein the means for integrating the metal structure with the molded duct system includes one of sonic welding, heat staking, insert molding, and gluing.
Abstract:
An integrated structural system for a vehicle is provided. The integrated structural system having a molded duct system configured to guide airflow, the molded duct system having a first section and a second section, the molded duct system configured to provide a supporting surface; and a metal structure, the metal structure integrated with the molded duct system by a means for integrating the metal structure with the molded duct system forming an integrated structural load path assembly, the integrated structural load path assembly being configured as a load bearing area to distribute a load on the supporting surface over the integrated structural load path assembly, wherein the means for integrating the metal structure with the molded duct system includes one of sonic welding, heat staking, insert molding, and gluing.
Abstract:
An integrated structural system for a vehicle is provided. The integrated structural system includes a molded duct system configured to guide airflow having a first section and a second section and configured to operably attach a vehicle component thereto. The integrated structural system also includes a metal structure integrated with the molded duct system by means for integrating the metal structure with the molded duct system forming an integrated structural load path assembly. The integrated structural load path assembly is configured as a load bearing area to distribute a load of the vehicle component operably attached thereto. The means for integrating the metal structure with said molded duct system include, but not limited to, at least one of, sonic welding, heat staking, insert molding, and gluing.
Abstract:
An integrated structural system for a vehicle is provided. The integrated structural system includes a molded duct system configured to guide airflow having a first section and a second section and configured to operably attach a vehicle component thereto. The integrated structural system also includes a metal structure integrated with the molded duct system by means for integrating the metal structure with the molded duct system forming an integrated structural load path assembly. The integrated structural load path assembly is configured as a load bearing area to distribute a load of the vehicle component operably attached thereto. The means for integrating the metal structure with said molded duct system include, but not limited to, at least one of, sonic welding, heat staking, insert molding, and gluing.
Abstract:
An instrument panel and method of making an instrument panel for use in a vehicle having a passenger side airbag module is disclosed. The instrument panel comprising: a first outer layer having a show surface and an inner surface; an intermediary layer disposed on the inner surface; an inner layer disposed on the intermediary layer; a plurality of cuts in the show surface, the plurality of cuts defining a deployable door in the instrument panel and the plurality of cuts in the show surface are not visually perceivable. The plurality of cuts being in the show surface of the first outer layer and the plurality of cuts do not extend all the way through the first outer layer.
Abstract:
In a vehicle frame, a console frame structure is assembled to a chassis or main frame structure using a flap retainer. The chassis includes a bracket having a slot with a forward closed end and a rear open end. The console frame structure includes a post that is inserted into the slot for assembly. A flap retainer is attached to the bracket adjacent the slot and includes a fixed portion attached near the closed end and a free portion adjacent the open end. The flap retainer defines an opening sized and shaped for receiving the post. During assembly, the flap retainer flexes so that the free portion is spaced apart from the open end of the slot to allow the post to be inserted. The flap retainer returns to a retaining position to capture the post within the opening of the flap retainer. In the event of a vehicle impact, the flap retainer secures the post to prevent the console frame structure from becoming dislodged.