Abstract:
A stack for a fuel cell system, including: a membrane electrode assembly, a separator that includes a fuel passage that supplies a fuel to an anode electrode of the membrane electrode assembly and an oxidant passage that supplies an oxidant to a cathode electrode of an adjacent membrane electrode assembly, a first manifold that is formed by connecting first penetration holes that penetrate the separator in a stacking direction and that is connected to the fuel passage, a second manifold that is formed by connecting second penetration holes that penetrate the separator in the stacking direction and that is connected to the oxidant passage and a baffle that is disposed in at least one of the first manifold and the second manifold. The baffle has a membrane structure to control the fluid flow inside of the at least one of the first manifold and the second manifold.
Abstract:
A method of driving a fuel cell system according to embodiments of the present invention includes supplying a first amount of oxidizer (which is less than a normal amount of oxidizer) to a fuel cell stack while continuously supplying fuel to the fuel cell stack, supplying a second amount of oxidizer (which is more than the normal amount) to the fuel cell stack, and supplying a third amount of oxidizer (which is the normal amount of oxidizer supplied in a normal driving state) to the fuel cell stack.
Abstract:
A fuel cell system includes a fuel cell stack that includes a plurality of unit cells, each including a membrane-electrode assembly including an electrolyte membrane, a cathode at one side of the electrolyte membrane, and an anode at an opposite side of the electrolyte membrane, and separators at respective sides of the membrane-electrode assembly, a fuel supply for supplying a fuel to the fuel cell stack, an oxidizing agent supply for supplying an oxidizing agent to the fuel cell stack, and a controller for controlling operation of the fuel supply and the oxidizing agent supply, for measuring a voltage of each of the unit cells, and for turning off a load coupled to the fuel cell stack after determining that the voltages of the unit cells reached a reference voltage.
Abstract:
Disclosed herein is a fuel cell stack structure, including: metallic bipolar plates having cooling surfaces facing each other, wherein film-removed portions are provided at portions of the cooling surfaces. The fuel cell stack structure is advantageous in that electrical conductivity can be achieved by the contact portion of two metallic bipolar plates without having to apply a conductive material onto the contact site of the cooling surfaces of the metallic bipolar plates, so that the manufacturing cost of the metallic bipolar plate can be reduced, thereby reducing the manufacturing cost a fuel cell stack.
Abstract:
A stack for a fuel cell system, including: a membrane electrode assembly, a separator that includes a fuel passage that supplies a fuel to an anode electrode of the membrane electrode assembly and an oxidant passage that supplies an oxidant to a cathode electrode of an adjacent membrane electrode assembly, a first manifold that is formed by connecting first penetration holes that penetrate the separator in a stacking direction and that is connected to the fuel passage, a second manifold that is formed by connecting second penetration holes that penetrate the separator in the stacking direction and that is connected to the oxidant passage and a baffle that is disposed in at least one of the first manifold and the second manifold. The baffle has a membrane structure to control the fluid flow inside of the at least one of the first manifold and the second manifold.
Abstract:
A fuel cell stack and a fuel cell system, the fuel cell stack including a plurality of membrane electrode assemblies, the membrane electrode assemblies being configured to generate electrical energy by an electrochemical reaction of a fuel and an oxidizer; and a plurality of bipolar plates positioned adjacent to the membrane electrode assemblies and between the membrane electrode assemblies, the bipolar plates including a fuel channel at one side thereof and an oxidizer channel at a second, opposite side thereof, wherein the bipolar plates include a plurality of cooling channels penetrating therethrough, the cooling channels having a curvature along a length thereof.
Abstract:
The present disclosure relates to a fuel cell stack capable of making fuel flow within the stack uniform. One embodiment of the present disclosure is configured to provide a fuel cell stack comprising: a stack comprising a plurality of fuel cells disposed in a stack body, a fuel manifold in the stack body fluidly connected to the plurality of fuel cells, an oxidant manifold in the stack body fluidly connected to the plurality of fuel cells, and a baffle disposed in the fuel manifold comprising a longitudinal recess wherein a cross-section of the recess reduces in one direction.
Abstract:
A fuel cell stack that includes: stacked cells that generate electricity; an exchange plate disposed at a first side of the stacked cells, having a channel in fluid communication with an injection flow path and a discharge flow path, which extend between the cells; and a pump that is disposed at an opposing second surface of the stacked cells, to force coolant (air) through the injection flow path, the exchange plate, and the discharge flow path.
Abstract:
A fuel cell stack including a plurality of membrane-electrode assemblies, a plurality of separators in close contact with the membrane-electrode assemblies between the membrane-electrode assemblies, and gaskets provided on the separators. Each of the separators includes an anode separator having first through holes and a cathode separator in contact with the anode separator and having the second through holes. Each of the gaskets includes a penetrating portion filled in the first through holes and penetrating the anode separator and the cathode separator and a sealing portion coupled to the penetrating portion and protruding from outer surfaces of the anode and cathode separators in a thickness direction of the anode separator and the cathode separator.
Abstract:
A fuel cell stack that includes: stacked cells that generate electricity; an exchange plate disposed at a first side of the stacked cells, having a channel in fluid communication with an injection flow path and a discharge flow path, which extend between the cells; and a pump that is disposed at an opposing second surface of the stacked cells, to force coolant (air) through the injection flow path, the exchange plate, and the discharge flow path.