Abstract:
A prosthetic system, comprising a first sub-system configured to evoke a hearing percept based on a first principle of operation, and a second sub-system configured to evoke a hearing percept based on at least one of the first principle of operation or a second principle of operation different from the first principle of operation, wherein the first and second sub-systems are configured to independently process respective inputs indicative of an ambient sound to harmonize an estimated recipient perception of magnitude of a property of the respective evoked hearing percepts.
Abstract:
A prosthetic system, comprising a first sub-system configured to evoke a hearing percept based on a first principle of operation, and a second sub-system configured to evoke a hearing percept based on at least one of the first principle of operation or a second principle of operation different from the first principle of operation, wherein the first and second sub-systems are configured to independently process respective inputs indicative of an ambient sound to harmonize an estimated recipient perception of magnitude of a property of the respective evoked hearing percepts.
Abstract:
A sound processing method for auditory prostheses, such as cochlear implants, which is adapted to improve the perception of loudness by users, and to improve speech perception. The overall contribution of stimuli to simulated loudness is compared with an estimate of acoustic loudness for a normally hearing listener based on the input sound signal. A weighting is applied to the filter channels to emphasize those frequencies which are most important to speech perception for normal hearing listeners when selecting channels as a basis for stimulation.
Abstract:
A prosthetic system, comprising a first sub-system configured to evoke a hearing percept based on a first principle of operation, and a second sub-system configured to evoke a hearing percept based on at least one of the first principle of operation or a second principle of operation different from the first principle of operation, wherein the first and second sub-systems are configured to independently process respective inputs indicative of an ambient sound to harmonize an estimated recipient perception of magnitude of a property of the respective evoked hearing percepts.
Abstract:
A prosthetic system, comprising a first sub-system configured to evoke a hearing percept based on a first principle of operation, and a second sub-system configured to evoke a hearing percept based on at least one of the first principle of operation or a second principle of operation different from the first principle of operation, wherein the first and second sub-systems are configured to independently process respective inputs indicative of an ambient sound to harmonize an estimated recipient perception of magnitude of a property of the respective evoked hearing percepts.
Abstract:
An auditory prosthesis device for selectively stimulating electrodes within an auditory prosthesis electrode array, comprising a transducer (2) for converting a complex acoustic sound into an electrical signal; signal processing means (13) responsive to an electrical signal and generating a temporal pattern of stimulation pulses to selected electrodes within the electrode array, the stimulation pulses being applied to each electrode at an electrode stimulation rate; feature extraction means (14) for deriving an estimate of at least one fundamental frequency of the electrical signal; and stimulation pulse adjustment means (15) for adjusting the stimulation pulses in accordance with the estimated fundamental frequency.
Abstract:
An auditory prosthesis device for selectively stimulating electrodes within an auditory prosthesis electrode array, comprising a transducer (2) for converting a complex acoustic sound into an electrical signal; signal processing means (13) responsive to an electrical signal and generating a temporal pattern of stimulation pulses to selected electrodes within the electrode array, the stimulation pulses being applied to each electrode at an electrode stimulation rate; feature extraction means (14) for deriving an estimate of at least one fundamental frequency of the electrical signal; and stimulation pulse adjustment means (15) for adjusting the stimulation pulses in accordance with the estimated fundamental frequency.
Abstract:
There is provided a system for predicting the characteristic frequency of each electrode of an implanted cochlear electrode array from electrode position data contained in an image of the implanted cochlea. There is also provided a system for setting the frequency range to electrode map of a cochlear prosthesis.