Abstract:
In general, techniques of the present disclosure are directed to a system for virtual socializing between electronic devices. In one example, the method includes joining, by a first computing device, a communication session enabling communication between the first computing device and a second computing device. The method includes outputting, multimedia content that is output at the second computing device. The method also includes receiving and outputting, by the first computing device, data from the second computing device using the communication session, while the multimedia content is outputting at the first output device, where the data comprises data captured by an input device of the second computing device. The method further includes sending a configuration request that sets a control model mode of the communication session, where the control model mode controls which computing devices communicatively coupled via the communication session has permission to modify at least the multimedia content.
Abstract:
The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.
Abstract:
The technologies described herein include systems and methods for encoding/decoding seismic sources and responses, generating and using of source-side derivatives while also generating and using the conventional source response. Sources in an array may be encoded such that activation of each source in the array constitutes a single spike in a sequence orthogonal to another sequence emitted by another source. The responses to these different sources that are in close spatial proximity can be decoded and separated. Source-side derivatives may be calculated and utilized in various applications in combination with the monopole response from the source location, including source-side deghosting, spatial (horizontal and vertical) interpolation and imaging.
Abstract:
The technologies described herein include systems and methods for encoding/decoding seismic sources and responses, generating and using of source-side derivatives while also generating and using the conventional source response. Sources in an array may be encoded such that activation of each source in the array constitutes a single spike in a sequence orthogonal to another sequence emitted by another source. The responses to these different sources that are in close spatial proximity can be decoded and separated. Source-side derivatives may be calculated and utilized in various applications in combination with the monopole response from the source location, including source-side deghosting, spatial (horizontal and vertical) interpolation and imaging.
Abstract:
There is disclosed an authentication device (10) for authenticating a luminescent security mark, the device comprising: an illumination source (30) configured to irradiate the security mark with a pulse of excitation radiation so as to cause the security mark to emit luminescent radiation that decays with time; a radiation detector configured to detect the luminescent radiation emitted by the security mark; and an optical waveguide (22) positioned relative to the illumination source (30) and the radiation detector and configured so as to guide by internal reflection both excitation radiation emitted from the illumination source towards the security mark, and luminescent radiation emitted by the security mark towards the radiation detector.
Abstract:
There is disclosed an authentication device (10) for authenticating a luminescent security mark, the device comprising: an illumination source (30) configured to irradiate the security mark with a pulse of excitation radiation so as to cause the security mark to emit luminescent radiation that decays with time; a radiation detector configured to detect the luminescent radiation emitted by the security mark; and an optical waveguide (22) positioned relative to the illumination source (30) and the radiation detector and configured so as to guide by internal reflection both excitation radiation emitted from the illumination source towards the security mark, and luminescent radiation emitted by the security mark towards the radiation detector.
Abstract:
A system for sequentially switching a plurality of guide ways to accommodate at least one vehicle with a plurality of ground engaging portions following a plurality of plural track segments is provided. The system includes a primary guide way to receive at least one of the plurality of ground engaging portions of the at least one vehicle and a secondary guide way located in proximity to the primary guide way. The secondary guide way may be configured to receive another of the plurality of ground engaging portions of the at least one vehicle. The system may also include a controller configured to sequentially switch the primary guide way and the secondary guide way whereby the at least one vehicle may travel in one direction or in another direction. A method of switching a plurality of guide ways is also presented.
Abstract:
The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.
Abstract:
A system for sequentially switching a plurality of guide ways to accommodate at least one vehicle with a plurality of ground engaging portions following a plurality of plural track segments is provided. The system includes a primary guide way to receive at least one of the plurality of ground engaging portions of the at least one vehicle and a secondary guide way located in proximity to the primary guide way. The secondary guide way may be configured to receive another of the plurality of ground engaging portions of the at least one vehicle. The system may also include a controller configured to sequentially switch the primary guide way and the secondary guide way whereby the at least one vehicle may travel in one direction or in another direction. A method of switching a plurality of guide ways is also presented.
Abstract:
The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.