Abstract:
The disclosure relates to an insulator for positioning an electrical conductor in a gas chamber in a housing of a gas-insulated switchgear assembly, which comprises an electrically insulating disc-shaped carrier element with at least one cutout for passing through an electrical conductor. At least one notch for accommodating a clamp element is arranged on the outer circumference of the carrier element at at least one point.
Abstract:
Exemplary embodiments are directed to a metal-encapsulated, polyphase busbar switch disconnector and earthing switch, including a housing which, on each of opposite sides has three flanges that lie on a plane. Each flange being connected to one busbar and, on a third side, a flange is connected to a circuit breaker. The circuit breaker having conductor elements arranged in an interior of the housing. First conductor elements are connected to the busbars, and second conductor elements are connected to circuit breaker poles. The second conductor elements are aligned at right angles to the first conductor elements, which connect the busbars to one another, such that the first conductor elements are substantially U-shaped and are passed around the second conductor elements. A switch disconnector and earthing switch contact arrangement is provided between an inner housing wall and the first and second conductor elements.
Abstract:
The heavy-duty circuit-breaker with arc blowing has an element which is sensitive to hot gas and/or to gas pressure and is protected by means of a seal against a hot-gas flow. The seal is advantageously a movable non-contacting seal. The seal has a channel entrance for production of a partial hot-gas flow of the hot-gas flow and, connected downstream from this, a channel in order to reduce the mass flow of the partial hot-gas flow, and an expansion chamber in order to expand the volume of the partial hot-gas flow. The expansion chamber is a pressure-relief area. The element may, for example, be a guide element, a contact-making element or a sealing element.
Abstract:
The heavy-duty circuit-breaker with arc blowing has an element which is sensitive to hot gas and/or to gas pressure and is protected by means of a seal against a hot-gas flow. The seal is advantageously a movable non-contacting seal. The seal can have a flow-element production means for production of a partial hot-gas flow of the hot-gas flow and, connected downstream from this, a mass-flow reduction means in order to reduce the mass flow of the partial hot-gas flow, and an expansion means in order to expand the volume of the partial hot-gas flow. The mass-flow reduction means is advantageously in the form of a channel. The expansion means is advantageously in the form of a pressure-relief area. The element may, for example, be a guide element, a contact-making element or a sealing element.
Abstract:
An exemplary switch having a housing that includes one contact bolt per phase. Each contact bolt moving along a longitudinal axis. In a first position on the axis, the contact bolt connects two active parts to one another. In a second position on the axis, the contact bolt is connected to a fixed earthing contact piece. A drive motor actuates the contact bolts via a drive spindle. The lines of movement of each contact bolt all phases lie in a common plane, wherein each contact bolt is driven by one insulating spindle, which is aligned with the line of movement. The drive spindle lies in the plane of the lines of movement and runs perpendicular to the insulating spindles and is coupled to each insulating spindle via a respective deflecting gear mechanism. The deflecting gear mechanism for the drive of the contact bolts is accommodated in the earthing contact pieces.
Abstract:
An exemplary switch having a housing that includes one contact bolt per phase. Each contact bolt moving along a longitudinal axis. In a first position on the axis, the contact bolt connects two active parts to one another. In a second position on the axis, the contact bolt is connected to a fixed earthing contact piece. A drive motor actuates the contact bolts via a drive spindle. The lines of movement of each contact bolt all phases lie in a common plane, wherein each contact bolt is driven by one insulating spindle, which is aligned with the line of movement. The drive spindle lies in the plane of the lines of movement and runs perpendicular to the insulating spindles and is coupled to each insulating spindle via a respective deflecting gear mechanism. The deflecting gear mechanism for the drive of the contact bolts is accommodated in the earthing contact pieces.
Abstract:
The switching chamber is intended for a gas-insulated high-voltage circuit breaker. It contains an axially symmetrical housing and a contact arrangement held in the housing with two switching pieces, of which at least one is arranged such that it can move along the housing axis. The switching chamber housing has two hollow bodies consisting of electrically conductive material which can be connected to a high voltage and an insulating tube holding the hollow bodies axially at a distance. A separation zone, which is electrically shielded during operation of the circuit breaker, is formed in the surface of at least one of the two hollow bodies and separates two surface zones having different degrees of roughness from one another in the hollow body. In homogeneities in the surface of the switching chamber housing which may reduce the dielectric strength of the circuit breaker equipped with the switching chamber therefore do not have any effect. For this reason, the switching chamber and the circuit breaker are characterized by a high degree of operational reliability and safety with a simple design.
Abstract:
The switching chamber is intended for a gas-insulated high-voltage circuit breaker. It contains an axially symmetrical housing and a contact arrangement held in the housing with two switching pieces, of which at least one is arranged such that it can move along the housing axis. The switching chamber housing has two hollow bodies consisting of electrically conductive material which can be connected to a high voltage and an insulating tube holding the hollow bodies axially at a distance. A separation zone, which is electrically shielded during operation of the circuit breaker, is formed in the surface of at least one of the two hollow bodies and separates two surface zones having different degrees of roughness from one another in the hollow body. Inhomogeneities in the surface of the switching chamber housing which may reduce the dielectric strength of the circuit breaker equipped with the switching chamber therefore do not have any effect. For this reason, the switching chamber and the circuit breaker are characterized by a high degree of operational reliability and safety with a simple design.
Abstract:
A switching device includes a switching element movable from a first position into a second position, a drive unit producing a rotary movement, and a flexible shaft transmitting the rotary movement to the switching element. The shaft has rotatable input and output sections on input- and output-drive sides, respectively. During movement of the shaft, a first rotary angle is producible at the output section, which first rotary angle is less than a second rotary angle at the input section at the same time, such that a first rotary angle shift is produced. The input section is connected to a switching position detection element having a control means with a first region which corresponds to the first position of the switching element and is coupled to the detection element. An identical indication of the detection element can be achieved in case of different rotary angle shifts in the same electrical switching state.
Abstract:
The disclosure relates to an insulator for positioning an electrical conductor in a gas chamber in a housing of a gas-insulated switchgear assembly, which comprises an electrically insulating disc-shaped carrier element with at least one cutout for passing through an electrical conductor. At least one notch for accommodating a clamp element is arranged on the outer circumference of the carrier element at least one point.