Abstract:
A precipitation static sensor includes a bottom flexible dielectric layer (e.g., a layer of urethane tape) configured to be attached to a wing or other external surface of an aircraft, a flexible conductive layer (e.g., a layer of aluminum tape) formed over a portion of the first flexible dielectric layer, and a conductor (such as a twisted-pair wire) coupled to the flexible conductive layer. A top flexible dielectric layer is formed over a portion of the bottom dielectric layer and a portion of the flexible conductive layer, thus forming an exposed detector region. In accordance with a further embodiment, multiple such precipitation static sensors are used and coupled to a meter device (e.g., a picoammeter), which may also be coupled to a data acquisition and display for providing a visual indication of the charge accumulated by the precipitation static sensors.
Abstract:
A precipitation static sensor includes a bottom flexible dielectric layer (e.g., a layer of urethane tape) configured to be attached to a wing or other external surface of an aircraft, a flexible conductive layer (e.g., a layer of aluminum tape) formed over a portion of the first flexible dielectric layer, and a conductor (such as a twisted-pair wire) coupled to the flexible conductive layer. A top flexible dielectric layer is formed over a portion of the bottom dielectric layer and a portion of the flexible conductive layer, thus forming an exposed detector region. In accordance with a further embodiment, multiple such precipitation static sensors are used and coupled to a meter device (e.g., a picoammeter), which may also be coupled to a data acquisition and display for providing a visual indication of the charge accumulated by the precipitation static sensors.
Abstract:
A precipitation static sensor includes a bottom flexible dielectric layer (e.g., a layer of urethane tape) configured to be attached to a wing or other external surface of an aircraft, a flexible conductive layer (e.g., a layer of aluminum tape) formed over a portion of the first flexible dielectric layer, and a conductor (such as a twisted-pair wire) coupled to the flexible conductive layer. A top flexible dielectric layer is formed over a portion of the bottom dielectric layer and a portion of the flexible conductive layer, thus forming an exposed detector region. In accordance with a further embodiment, multiple such precipitation static sensors are used and coupled to a meter device (e.g., a picoammeter), which may also be coupled to a data acquisition and display for providing a visual indication of the charge accumulated by the precipitation static sensors.