摘要:
The present invention generally relates to the field of microwave antennas, and, more particularly, to a number of three-dimensional designs for the radiation element of an ultra-wideband monopole antenna with a symmetrical omni-directional radiation pattern operated in the frequency range between 3.1 GHz and 10.6 GHz. Said antenna is connected to the analog front-end circuitry of a wireless communication device used for transmitting and/or receiving microwave signals and meets the FCC requirements in terms of antenna gain, radiation pattern, polarization, frequency bandwidth, group delay, and size. It comprises a radiation element consisting of an air- and/or dielectric-filled cavity structure with a base plane and a radiator plane. A metallic ground plane having a relatively high surface impedance to electromagnetic waves within said frequency range, which is printed on a dielectric substrate, serves as a reflector. The monopole antenna further comprises an antenna feeding circuitry used for electronically steering the symmetrical omni-directional radiation pattern and a feeding line connecting the antenna feeding circuitry with the base plane of the radiation element. Thereby, parts of the analog front-end circuitry can optionally be placed within the air-filled part of the radiation element of the antenna.The proposed designs include a radiation element having the form of a truncated right circular cone, rotational-symmetric radiation elements with a convexly- or concavely-shaped 3D surface, respectively, a radiation element in the form of a truncated right regular pyramid with a square base plane, and radiation elements with a combined structure comprising a conical, pyramidal, convexly- or concavely-shaped first part and a closed cylindrical or cuboidal second part whose top plane is arranged on top of the congruent base plane of said first part. Further embodiments include radiation elements with the form of a radially notched cylinder or hemisphere as well as combined structures consisting of at least two convexly-shaped elements or two conical parts, respectively, stacked on top of each other.
摘要:
A modulation identification device can be used for detecting the modulation type of a wirelessly transmitted and modulated RF signal without a-priori information on the kind of modulation used. The modulation identification device (1) comprises a n-port junction (17), n being an integer equal to or larger than three. The n-port junction (17) is supplied with the modulated RF signal (2) and a second RF signal (3) from a local oscillator. The n-port junction (17) outputs at least one third RF signal to at least one power detector (18). A signal processing unit (6) processes the power detected output of the n-port junction (17) to generate at least one flag (10) indicating the identified modulation type.
摘要:
The present invention relates to a method and a device for the I/Q demodulation of modulated RF signals. The I/Q demodulator (60) has a first input for the RF signal (61) to be demodulated and a second input for a RF signal (62) originating from a local oscillator (20). The demodulator (60) combines the two RF signals (61,62) to generate three output signals supplied to three power detectors. In a combination unit (70) the three power signals of the power detectors are merged in two signal branches wherein after passing an A/D converting (72) and digital processing unit (73) one signal is the I component and the other one is the Q component of the received modulated RF signal (61).
摘要:
The present invention relates to an I/Q demodulator (21) comprising a n-port structure (1,16) is provided, wherein n is an integer value of 4,5 or 6. The demodulator (21) is supplied at a first input (3) with a RF signal (2) which has to be demodulated. At a second input (5) it is supplied with a second RF signal (4). The n−2 output signals (6) are detected by power sensors (7). After low pass filtering (14) the output signals of the power sensors (7) are multiplexed by a multiplexing means (8).
摘要:
The present invention generally relates to the field of microwave antennas, and, more particularly, to a number of three-dimensional designs for the radiation element of an ultra-wideband monopole antenna with a symmetrical omni-directional radiation pattern operated in the frequency range between 3.1 GHz and 10.6 GHz. Said antenna is connected to the analog front-end circuitry of a wireless communication device used for transmitting and/or receiving microwave signals and meets the FCC requirements in terms of antenna gain, radiation pattern, polarization, frequency bandwidth, group delay, and size. It comprises a radiation element consisting of an air- and/or dielectric-filled cavity structure with a base plane and a radiator plane. A metallic ground plane having a relatively high surface impedance to electromagnetic waves within said frequency range, which is printed on a dielectric substrate, serves as a reflector. The monopole antenna further comprises an antenna feeding circuitry used for electronically steering the symmetrical omni-directional radiation pattern and a feeding line connecting the antenna feeding circuitry with the base plane of the radiation element. Thereby, parts of the analog front-end circuitry can optionally be placed within the air-filled part of the radiation element of the antenna. The proposed designs include a radiation element having the form of a truncated right circular cone, rotational-symmetric radiation elements with a convexly- or concavely-shaped 3D surface, respectively, a radiation element in the form of a truncated right regular pyramid with a square base plane, and radiation elements with a combined structure comprising a conical, pyramidal, convexly- or concavely-shaped first part and a closed cylindrical or cuboidal second part whose top plane is arranged on top of the congruent base plane of said first part. Further embodiments include radiation elements with the form of a radially notched cylinder or hemisphere as well as combined structures consisting of at least two convexly-shaped elements or two conical parts, respectively, stacked on top of each other.
摘要:
A demodulator for modulated RF signals comprises a passive four port structure (1). The four port structure (1) has a first input (3) for supplying a modulated RF signal to be demodulated. A second input (2) is supplied with a RF signal from a local oscillator (21). Two output terminals are connected to power sensors (4, 5). The RF signal from the local oscillator (21) is supplied to the second input (3) of the four port structure (1) without being RF switched by an RF switch. The demodulator is particularly useful for modulation schemes with a finite number of magnitude states (nQAM modulation).
摘要:
A three port structure for the down conversion demodulation of a digitally modulated RF signal is proposed, wherein no RF switches are provided. The three port structure (1) has a first input (2) for the RF signal to be down converted and a second input (3) for a RF signal originating from a local oscillator (8). An output (4) of the three port structure (1) is supplied to a power sensor unit (5). The RF signal from the local oscillator (8) is modulated (7) before it is supplied to the three port structure (1).
摘要:
A down converter for RF signals comprises one three port junction (7) having one input port six for modulated digital RF signals and two output ports (8, 9). The output ports (8, 9) are respectively connected to a power sensor (10, 11). The three port junction (7) comprises a power splitter (16) dividing the signal supply to the input terminal (6) of the two branches, processing means (17, 18, 19, 21, 22, 23, 24) for processing one of the branches and a four port junction device (20) for combining the two branches and for generating two output signals to be supplied to the output terminals (8, 9) of the three port junction (7). The processing means can comprise a delay unit (18) or alternatively a frequency divider (21), a plurality of filters (22, 24) and a frequency multiplicator (23).
摘要:
The present invention relates to a circular polarized antenna comprising a planar dielectric substrate comprising a front and a back dielectric face, at least one subantenna means comprising a first and second element for radiating and receiving circular polarized electromagnetic signals, at least one transmission line means for transmitting signals from and to said at least one subantenna means, wherein the antenna is characterized in that the first and second elements of the subantenna means are slots arranged orthogonal to each other in a V-shape on the front dielectric face of the substrate and in that the transmission line means are arranged on the back dielectric face of the substrate. This structure provides a simple configuration which can be produced at low costs and is suitable for the use in a planar array antenna, in particular due to the decoupling of the feed system from the radiating element.
摘要:
A method for detecting foreign objects in an induction charging device, with the aid of at least one control and/or regulating unit of the induction charging device, includes: ascertaining a resonance frequency; determining an actual quality at the resonance frequency; and comparing the actual quality to a setpoint quality which is a function of a resonance frequency.