Data modeling of class independent recognition models
    1.
    发明授权
    Data modeling of class independent recognition models 失效
    类独立识别模型的数据建模

    公开(公告)号:US08005674B2

    公开(公告)日:2011-08-23

    申请号:US11775251

    申请日:2007-07-10

    申请人: Eric W Janke Bin Jia

    发明人: Eric W Janke Bin Jia

    IPC分类号: G10L15/06 G10L15/10 G10L15/14

    CPC分类号: G10L15/063 G10L15/14

    摘要: A recognition model set is generated. A technique is described to take advantage of the logarithm likelihood of real data for cross entropy to measure the mismatch between a training data and a training data derived model, and compare such type of mismatches between class dependent models and class independent model for evidence of model replacement. By using change of cross entropies in the decision of adding class independent Gaussian Mixture Models (GMMs), the good performance of class dependent models is largely retained, while decreasing the size and complexity of the model.

    摘要翻译: 生成识别模型集。 描述了一种技术,以利用实际数据的对数似然度来测量训练数据和训练数据导出模型之间的不匹配,并比较类依赖模型和类独立模型之间的类型,以证明模型 替代。 通过在添加类独立高斯混合模型(GMM)的决策中使用交叉熵的变化,大大保持了类依赖模型的良好性能,同时减小了模型的大小和复杂性。

    Data Modelling of Class Independent Recognition Models
    2.
    发明申请
    Data Modelling of Class Independent Recognition Models 失效
    类独立识别模型的数据建模

    公开(公告)号:US20080126094A1

    公开(公告)日:2008-05-29

    申请号:US11775251

    申请日:2007-07-10

    申请人: Eric W. Janke Bin Jia

    发明人: Eric W. Janke Bin Jia

    IPC分类号: G10L15/28

    CPC分类号: G10L15/063 G10L15/14

    摘要: A method, system, and computer program for generating a recognition model set. A technique is described to take advantage of the logarithm likelihood of real data for cross entropy to measure the mismatch between a training data and a training data derived model, and compare such type of mismatches between class dependent models and class independent model for evidence of model replacement. By using change of cross entropies in the decision of adding class independent Gaussian Mixture Models (GMMs), the good performance of class dependent models is largely retained, while decreasing the size and complexity of the model.

    摘要翻译: 一种用于生成识别模型集的方法,系统和计算机程序。 描述了一种技术,以利用实际数据的对数似然度来测量训练数据和训练数据导出模型之间的不匹配,并比较类依赖模型和类独立模型之间的类型,以证明模型 替代。 通过在添加类独立高斯混合模型(GMM)的决策中使用交叉熵的变化,大大保持了类依赖模型的良好性能,同时减小了模型的大小和复杂性。