摘要:
Apparatus for spectroscopic analysis of chemical compounds in samples released from a gas chromatograph is configured for placing the samples in matrix isolation for exposure to a beam of light generated from a spectrometer. The apparatus includes a vacuum chamber, housing a generally cylindrical, axially rotating sample disk having an axle and a mirrored surface, which is provided for receiving the samples from the gas chromatograph. A support block supports the rotating disk within the vacuum chamber. Also included in the apparatus is a cooling device which is in contact with the support block for cryogenically cooling the mirrored surface. Further, the disk is configured such that it rotates relative to the stationary cooling device. Also featured is a sample deposition apparatus which displaces a sample deposition nozzle to avoid contamination of the mirrored surface, and positions the deposition nozzle relative to the sample disk to obtain real time sample analysis.
摘要:
A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.
摘要:
Apparatus for spectroscopic analysis of chemical compounds in samples released from a gas chromatograph is configured for placing the samples in matrix isolation for exposure to a beam of light generated from a spectrometer. The apparatus includes a vacuum chamber, housing a generally cylindrical, axially rotating sample disk having an axle and a mirrored surface, which is provided for receiving the samples from the gas chromatograph. A support block supports the rotating disk within the vacuum chamber. Also included in the apparatus is a cooling device which is in contact with the support block for cryogenically cooling the mirrored surface. Further, the disk is configured such that it rotates relative to the stationary cooling device. Also featured is a sample deposition apparatus which displaces a sample deposition nozzle to avoid contamination of the mirrored surface, and positions the deposition nozzle relative to the sample disk to obtain real time sample analysis.
摘要:
A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.
摘要:
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
摘要:
Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.