Abstract:
A time reference system for generating a time reference from signals produced by a global navigation satellite constellation has a satellite signal receiver to receive and down-convert code-modulated signals from a plurality of satellites and a correlator to track and decode the down-converted signals to provide signals containing partial pseudo-range measurements for respective satellites. A data processing arrangement receives assistance data from an external source and performs data-bit synchronization in which bit edges of a low frequency data bit stream carried by the received satellite signals are identified, to perform a preliminary position-velocity-time solution to provide an approximate time reference, and to perform auto-correlation of pre-selected data sequences in the data stream to resolve time ambiguities thereby to compute a precise time reference signal in weak received signal conditions. The pre-selected data sequences may be the repeated data preamble in the GPS navigation message constituted by the data stream.
Abstract:
A positioning system operates by first determining that a user is pedestrian, and then estimating a speed of the user. Having tracked a first signal from one radio transmitter whose position is known, the system attempts to detect additional signals from the one transmitter, in a search space such that the first signal and the or each additional signal are consistent with the estimated speed of the user and with one or more of the signals having been reflected off a reflector in the vicinity of the user. One or more detected additional signals from the one transmitter are then tracked, and candidate measurements, derived from the first signal and the one or more detected additional signals, are provided for use when estimating the position and/or velocity of the user.
Abstract:
A radiobeacon station is described comprising: a satellite receiver configured to receive satellite navigation data from a satellite; a timing circuit configured to determine a timing scheme based on the satellite navigation data; and a terrestrial transmitter configured to transmit a plurality of beacon signals based on the determined timing scheme.
Abstract:
A positioning or timing receiver, for receiving pseudo-noise encoded signals includes mask mixers in the main signal paths, prior to accumulators. The mask mixers are fed with mask signals having a period equal to the period of the pseudo-noise code, provided by a mask generator. The mask generator and mixers provide an extra level of functionality in the receiver, through which a large number of uses can be made. For example, without modifying a code signal mixed into the main signal path, the mask mixers allow dynamic adaptability from a wide correlator to a narrow correlator by simple control of the mask generator. Many different discrimination patterns can be obtained. By changing the mask signals and examining correlator outputs, it is possible to detect whether a signal being tracked contains a multipath component. The receiver also includes a switch, whereby two correlators may be fed with signals from the in-phase main signal path.
Abstract:
A method for collecting a satellite data stream is disclosed. The method includes: receiving satellite signals; storing the received satellite signals; completing bit synchronization and subframe synchronization of the received satellite signals; recovering a portion of the satellite data stream from the satellite signals stored prior to completing bit synchronization and subframe synchronization.
Abstract:
A time reference system for generating a time reference from signals produced by a global navigation satellite constellation has a satellite signal receiver to receive and down-convert code-modulated signals from a plurality of satellites and a correlator to track and decode the down-converted signals to provide signals containing partial pseudo-range measurements for respective satellites. A data processing arrangement receives assistance data from an external source and performs data-bit synchronisation in which bit edges of a low frequency data bit stream carried by the received satellite signals are identified, to perform a preliminary position-velocity-time solution to provide an approximate time reference, and to perform auto-correlation of pre-selected data sequences in the data stream to resolve time ambiguities thereby to compute a precise time reference signal in weak received signal conditions. The pre-selected data sequences may be the repeated data preamble in the GPS navigation message constituted by the data stream.