Abstract:
A novel improved gypsum board having improved antifungal properties is disclosed. The board comprises a gypsum core, front and back paper facings and a polymeric antifungal agent effective at inhibiting fungal growth. A preferred polymeric antifungal agent is polyDADMAC or polyTMMC. In addition to the polymeric antifungal agent, a non-polymeric antifungal agent, such as cetyl pyridinium chloride, sodium or zinc pyrithione, or both, may be included. The polymeric antifungal agent can be present in the gypsum core and/or on one or both of the paper facings. In addition, the antifungal agent may be encapsulated in a material or ionically associated with the polymeric antifungal agent, that releases the antifungal agent over time and/or upon exposure to moisture. Also disclosed are methods for preparing the aforementioned improved antifungal gypsum board.
Abstract:
A novel gypsum board having improved antimicrobial and antibacterial properties is disclosed. The board comprises a gypsum core, front and back paper facings, and a polymeric antimicrobial or antibacterial compound effective at inhibiting fungal growth. Preferred polymeric antimicrobial and antibacterial compounds include polyDADMAC, polyTMMC, and quaternized polyvinyl pyridine derivatives. The novel gypsum board further comprises a non-polymeric antimicrobial or antibacterial compound. Preferred non-polymeric antimicrobial or antibacteral compounds include cetyl pyridinium chloride and sodium pyrithione. The polymeric antimicrobial or antibacterial compound can be present in the gypsum core and/or on one or both of the paper facings. The non-polymeric antimicrobial or antibacterial compound may be encapsulated in a material or ionically associated with the polymeric antimicrobial or antibacterial compound to allow releases of the non-polymeric antimicrobial or antibacterial compound over time and/or upon exposure to moisture. Methods for preparing the aforementioned novel gypsum board are also disclosed.
Abstract:
This invention relates to antimicrobial wound dressings having a non-leaching antimicrobial activity, releasable antimicrobial and antiprotease agents, and a controlled-release bioactive agent such as doxycycline. The Wound dressing material is absorbent and acts as a substrate for antimicrobial and antiprotease agents as well as bioactive agents. More generally, this invention relates to methods and compositions for materials having a non-leaching coating that has antimicrobial properties. The coating is applied to substrates such as gauze-type wound dressings, powders and other substrates. Covalent, non-leaching, non-hydrolyzable bonds are formed between the substrate and the polymer molecules that form the coating. A high concentration of anti-microbial groups on multi-length polymeric molecules and relatively long average chain lengths, contribute to an absorbent or superabsorbent surface with a high level antimicrobial efficacy. Utilization of non-leaching coatings having a plurality of anionic or cationic sites is used according to this invention to bind a plurality of oppositely charged biologically or chemically active compounds, and to release the bound oppositely charged biologically or chemically active compounds from said substrate over a period of time to achieve desired objectives as diverse as improved wound healing to reduction in body odor.
Abstract:
This invention relates to methods and compositions for materials having a non-leaching coating that has antimicrobial properties. The coating is applied to substrates such as gauze-type wound dressings, powders and other substrates. Covalent, non-leaching, non-hydrolyzable bonds are formed between the substrate and the polymer molecules that form the coating. A high concentration of anti-microbial groups on multi-length polymer chains and relatively long average chain lengths, contribute to an absorbent or superabsorbent surface with a high level antimicrobial efficacy. Utilization of non-leaching coatings having a plurality of anionic or cationic sites is used according to this invention to bind a plurality of oppositely charged biologically or chemically active compounds, and to release the bound oppositely charged biologically or chemically active compounds from said substrate over a period of time to achieve desired objectives as diverse as improved wound healing to reduction in body odor.
Abstract:
A novel gypsum board having improved antimicrobial and antibacterial properties is disclosed. The board comprises a gypsum core, front and back paper facings, and a polymeric antimicrobial or antibacterial compound effective at inhibiting fungal growth. Preferred polymeric antimicrobial and antibacterial compounds include polyDADMAC, polyTMMC, and quaternized polyvinyl pyridine derivatives. The novel gypsum board further comprises a non-polymeric antimicrobial or antibacterial compound. Preferred non-polymeric antimicrobial or antibacteral compounds include cetyl pyridinium chloride and sodium pyrithione. The polymeric antimicrobial or antibacterial compound can be present in the gypsum core and/or on one or both of the paper facings. The non-polymeric antimicrobial or antibacterial compound may be encapsulated in a material or ionically associated with the polymeric antimicrobial or antibacterial compound to allow releases of the non-polymeric antimicrobial or antibacterial compound over time and/or upon exposure to moisture. Methods for preparing the aforementioned novel gypsum board are also disclosed.
Abstract:
A novel improved gypsum board having improved antifungal properties is disclosed. The board comprises a gypsum core, front and back paper facings and a polymeric antifungal agent effective at inhibiting fungal growth. A preferred polymeric antifungal agent is polyDADMAC or polyTMMC. In addition to the polymeric antifungal agent, a non-polymeric antifungal agent, such as cetyl pyridinium chloride, sodium or zinc pyrithione, or both, may be included. The polymeric antifungal agent can be present in the gypsum core and/or on one or both of the paper facings. In addition, the antifungal agent may be encapsulated in a material or ionically associated with the polymeric antifungal agent, that releases the antifungal agent over time and/or upon exposure to moisture. Also disclosed are methods for preparing the aforementioned improved antifungal gypsum board.
Abstract:
A novel gypsum board having improved antifungal properties is disclosed. The board comprises a gypsum core, front and back paper facings, and a polymeric antifungal agent effective at inhibiting fungal growth. A preferred polymeric antifungal agent is polyDADMAC or polyTMMC. The novel gypsum board further comprises a non-polymeric antifungal agent comprising a fluorine-containing quaternary ammonium compound. Preferred non-polymeric ammonium compounds include Tetra-n-butylammonium fluoride and Tetraethylammonium fluoride. The polymeric antifungal agent can be present in the gypsum core and/or on one or both of the paper facings. The non-polymeric antifungal agent may be encapsulated in a material or ionically associated with the polymeric antifungal agent to allow releases of the non-polymeric antifungal agent over time and/or upon exposure to moisture. Methods for preparing the aforementioned novel gypsum board are also disclosed.