摘要:
A deicing device for propfan-type aircraft propulsion unit blades, wherein the propulsion unit includes a turbomachine that drives in rotation at least one rotor including a plurality of blades arranged around an annular crown moving with the blades, which forms with its outer wall part of the outer envelope of the propulsion unit, the outer envelope being subjected to atmospheric conditions outside the propulsion unit, the turbomachine generating a flow of hot gases that exit via an annular hot vein, which is concentric with the moving annular crown, and defined for part of its surface by an inner wall of the moving annular crown. The deicing device includes: a mechanism transforming thermal energy into electrical energy, within the moving annular part; a mechanism transferring the generated electrical energy towards the rotor blades; and a mechanism transforming the electrical energy into thermal energy onto at least a part of the surface of the blades.
摘要:
Device for driving at least one wheel of an aircraft landing gear, which includes at least one turbine machine incorporated into the landing gear of the aircraft. Advantageously, the turbine machine is a pneumatic turbine.
摘要:
A system for cooling and adjusting the temperature of apparatuses in the propulsion assembly of an aircraft, that includes first means for heat exchange between lubrication circuits of at least two of the aforementioned apparatuses and a heat-carrier fluid contained in a closed circuit, a second means for heat exchange between the heat-carrier fluid and at least one coolant, the first heat exchange means being arranged locally at each of the aforementioned apparatuses, the second heat exchange means being remote from the aforementioned first means, the closed circuit extending between at least two of the aforementioned apparatuses and the aforementioned second means.
摘要:
The object of the invention is an aircraft nacelle that comprises, on the inside, an inside pipe (56) that empties out toward the front at an air intake (58), and, on the outside, an aerodynamic wall that extends from the air intake (58) up to the rear end of the nacelle, and a hood (62) that comprises said air intake (58) as well as a cylindrical wall (64) that forms at least one portion of the aerodynamic surface of the outside of the nacelle, whereby said hood (62) can move translationally relative to a stationary part of the nacelle toward the front along slides (72), each slide (72) comprising a guide element (74) that is connected to the hood (or to the stationary part of the nacelle), whereby said guide element (74) can slide into a pipe (78) that is connected to the stationary part of the nacelle (or to a hood) and has a section that is above the section of the guide element (74) so as to allow the hood (62) to rotate in order to immobilize it in the closed position.
摘要:
The invention concerns a turbojet for aircraft including engine located in nacelle, and thermal exchanger intended to cool a fluid participating in the engine propulsive system, characterized in that said thermal exchanger is located on engine external wall, an interstitial space within which air can circulate being arranged between the engine external wall and a lower wall of said thermal exchanger. The invention also concerns an aircraft provided with at least one such turbojet.
摘要:
A process for management of thermal effluents of an aircraft that includes an airframe (110) and at least one propulsion system (112), whereby the at least one propulsion system (112) includes a gas turbine engine (116) that is supplied with fuel via a fuel supply circuit (122) that extends from a reservoir (124) that is arranged at the airframe (110), whereby the airframe (110) includes at least one source of thermal effluents (134), wherein the process includes at least partially dissipating—at the level of at least one propulsion system (112)—the thermal effluents that are generated at the airframe (110) by using as coolant the fuel that is used for supplying the gas turbine engine (116).
摘要:
The invention relates to a device for driving at least one landing gear wheel of an aircraft by means of a wheel motor, which is intended to be used in the stage when the aircraft is traveling on the ground, said aircraft having turbojet engines (1) attached to the main wing. The device comprises at least one power source (6, 8), and one power transmission line between the power source and the wheel motor. The power source (6, 8) is arranged adjacently to a turbojet engine (1) attached to the main wing of the aircraft, and comprises disengageable means (7) enabling the power source to be mechanically connected to the rotating portion of the turbojet engine (1), the power source being sufficient to act as a starter for the turbojet engine (1).
摘要:
A hinged device for at least one door (46.1, 46.2) of an aircraft nacelle (40), whereby the door is able to block an opening (44) that is made in the fairing of the nacelle, the device including a base to which is connected at least one door, able to occupy a first retracted state in which the base is located at least in part inside the nacelle and a second extended state in which the base is located outside the fairing of the nacelle so as to be able to move, in a direction that is essentially parallel to the longitudinal axis of the nacelle, outside of the nacelle by entraining the at least one door (46.1, 46.2) to release the opening (44) at least in part.
摘要:
The invention concerns a turbojet for aircraft including engine located in nacelle, and thermal exchanger intended to cool a fluid participating in the engine propulsive system, characterized in that said thermal exchanger is located on engine external wall, an interstitial space within which air can circulate being arranged between the engine external wall and a lower wall of said thermal exchanger. The invention also concerns an aircraft provided with at least one such turbojet.
摘要:
The object of the invention is an aircraft nacelle that comprises, on the inside, an inside pipe (56) that empties out toward the front at an air intake (58), and, on the outside, an aerodynamic wall that extends from the air intake (58) up to the rear end of the nacelle, and a hood (62) that comprises said air intake (58) as well as a cylindrical wall (64) that forms at least one portion of the aerodynamic surface of the outside of the nacelle, whereby said hood (62) can move translationally relative to a stationary part of the nacelle toward the front along slides (72), each slide (72) comprising a guide element (74) that is connected to the hood (or to the stationary part of the nacelle), whereby said guide element (74) can slide into a pipe (78) that is connected to the stationary part of the nacelle (or to a hood) and has a section that is above the section of the guide element (74) so as to allow the hood (62) to rotate in order to immobilize it in the closed position.