摘要:
An amorphous silicon based hole-injection type "Separate Absorption and Multiplication Avalanche Photodiode" ("SAMAPD") has been invented. The device was made by separating an absorption layer and an avalanche layer from a conventional APD (Avalanche Photodiode). This will make a majority of an voltage bias to go across on the avalanche layer (i.e., a high energy bandgap material) and to enlarge an avalanche multiplication effect (i.e., increasing optical gains). In addition, the voltage bias goes across on the absorption layer will be sufficiently small to reduce a dark current. Using an i-a-Si:H material as the avalanche layer material and an i-a-Si.sub.1-x :Ge.sub.x :H material as the absorption layer material, the hole-injection type SAMPAD yields a very high gain, i.e., 686, at a reverse bias of 16V under an incident light power of P.sub.in =1 .mu.w. The product of this invention is very suitable for use in a long distance optical communication.