Abstract:
A method of increasing the recovery of natural gas from a geo-pressured aquifer containing water and gas and having a zone of free gas dispersed in water, by providing one or more wells extending from the surface to and completed in the geo-pressured aquifer in said zone and allowing the aquifer to flow water and gas under natural pressure through the well and lowering the pressure in the aquifer sufficiently to allow the gas to be released from solution in the water whereby the gas released will migrate more freely to the well and be produced. Also, any gas-phase saturation in the aquifer and any deposit of gaseous hydrocarbons in the formation in pressure communication with the wells will expand due to lowered aquifer pressure and be encouraged to flow to the wells and be recovered. Preferably, the wells are produced at a high enough rate of production to reduce the existing aquifer pressure in the drainage area of the wells as quickly as possible so that gas may be released from solution in the water and so that gaseous hydrocarbons in the formation may expand and flow to the wells. A high initial flow rate of at least 15,000 barrels of water per day from each well is necessary to effect the lowering of the aquifer pressure by at least 25% in order to provide the necessary mobility of the gas to obtain the enhanced gas recovery by the present method.
Abstract:
A method for the economic recovery of significant additional quantities of oil and gas from a geo-pressured water-drive oil reservoir where oil production has ceased by conventional production techniques and equipment. The method increases the recovery from this type of reservoir, after primary depletion by conventional techniques, by producing the water (and a quantity of oil) from the wells at an abnormally high rate of flow and thereby induces a significant pressure drop in the reservoir remote from the well. This will then induce a significant release of solution gas from the oil through the reservoir. Since the residual hydrocarbon saturation in a water-wet porous media is a constant value for a given reservoir rock, a part of the gas released from solution will increase the hydrocarbon saturation and allow a portion of the oil and gas to become mobile and migrate to the producing wells to be recovered.
Abstract:
A method of increasing the recovery of natural gas from a geo-pressured aquifer containing water and gas and having a zone of free gas dispersed in water, by providing one or more wells extending from the surface to and completed in the geo-pressured aquifer in said zone and allowing the aquifer to flow water and gas under natural pressure through the well and lowering the pressure in the aquifer sufficiently to allow the gas to be released from solution in the water whereby the gas released will migrate more freely to the well and be produced. Also, any gas-phase saturation in the aquifer and any deposit of gaseous hydrocarbons in the formation in pressure communication with the wells will expand due to lowered aquifer pressure and be encouraged to flow to the wells and be recovered. Preferably, the wells are produced at a high enough rate of production to reduce the existing aquifer pressure in the drainage area of the wells as quickly as possible so that gas may be released from solution in the water and so that gaseous hydrocarbons in the formation may expand and flow to the wells. A high initial flow rate of at least 15,000 barrels of water per day from each well is necessary to effect the lowering of the aquifer pressure by at least 25% in order to provide the necessary mobility of the gas to obtain the enhanced gas recovery by the present method.
Abstract:
A method of increasing the recovery of natural gas from a geo-pressured aquifer having a structural high or other "trap" from which gas or other fluids cannot escape upward and containing water and gas in solution in the water. The method includes producing water, from one or more wells extending from the surface and completed in the geo-pressured aquifer at a point below and spaced from and remote from the trap, by reservoir pressure at a high enough rate of production to reduce the existing pressure of the aquifer to allow a portion of the gas in solution to be released from the water whereby some of the released gas will migrate upward to form or increase any free-gas phase existing in the trap. Thereafter, gas is produced from one or more wells extending from the surface to the free-gas phase in the trap. Furthermore, the production of water is continued from the one or more wells extending from the surface and completed in said geo-pressured aquifer at a point below and spaced from the trap while producing gas from the trap. In the event that a free-gas phase is dispersed in the water, a portion of the free-gas phase will expand and migrate and some of the expanded gas will migrate more freely to the down structure wells and be produced and some of the expanded free-gas phase will migrate upward to the trap and be produced from the wells completed in the trap.