Abstract:
In radio communication, especially in a centralized network, a commonly faced problem is the issue of the coexistence between a plurality of networks and different networks use different network timing parameters with no synchronization to one another. Thus, a device of one network usually has a difficulty in communication with a device of another network whether or not both are in a radio communication range. This results in causing unwanted mutual interference because when two or more networks operate in the same operation space, a device belonging to a certain network has a difficulty in letting a device belonging to another network know about the existence of the device belonging to the certain network. A means for enabling the first device to communicate with the second device is presented and the operation in the current channel is stopped and the current channel in operation is opened with respect to the second device and the other devices in the network of the second device by the established communication means.
Abstract:
A method of wireless medium access for establishing a decentralized wireless network, the method comprising broadcasting of beacon frames by each of a plurality of devices; listening, at each device, for beacon frames of other devices; identifying, at each device, other devices who's beacon frames have been heard; and forming the decentralised wireless network as at least two dynamic networks, each dynamic network being centered around one of the devices and having said other devices who's beacon frames have been heard by said one device as network members.
Abstract:
A method of merging two or more beacon groups (BGs), each BG comprising one or more wireless devices, the method comprising, determining a leader BG based on merging information broadcast by two or more devices of different BGs, said devices being within radio range of each other; and merging the two or more BGs into the leader BG; wherein the merging information of each device comprises an extension indication, the extension indication being positive if another device of a same BG as said each device is out of radio range of said each device, and negative otherwise.
Abstract:
A method of merging two or more beacon groups (BGs), each BG comprising one or more wireless devices, the method comprising, determining a leader BG based on merging information broadcast by two or more devices of different BGs, said devices being within radio range of each other, and merging the two or more BGs into the leader BG; wherein the merging information of each device comprises an extension indication, the extension indication being positive if another device of a same BG as said each device is out of radio range of said each device, and negative otherwise.
Abstract:
A distributed wireless medium access control protocol is disclosed. According to the disclosed wireless medium access control protocol the medium access time is partitioned into equal sized slots, and a predetermined number of the slots forming a superframe. The protocol defines beaconing devices and passive devices. Each beaconing device designates one of the slots in the superframe as its beacon medium access slot, and broadcasts during that beacon medium access slot a beacon frame to other devices in wireless range of that beaconing device. A beacon frame collision detection and resolution procedure, and a procedure for reserving access time for communication between devices are also disclosed.
Abstract:
A method and device for wireless directional beam-forming transmission. The method for wireless directional beam-forming transmission between a first device and a second device comprises conducting one or more omni-directional transmissions between the first device and a third device; conducting one or more omni-directional transmissions between the second device and the third device; and determining directional information for directional beam forming transmissions between the first and second devices based on the omni-directional transmissions.
Abstract:
A multiple wireless networks structure comprising a plurality of beacon groups each comprising one or more devices communicating via an associated wireless network utilising a superframe structure; wherein each device of each beacon group allocates a local control period and one or more neighbor control periods in each superframe; wherein the neighbor control periods in each beacon group cover all one or more control periods of other beacon groups detected by one or more of the devices in said each beacon group to an extent as said control periods do not overlap with the local control period in said each beacon group.
Abstract:
A multiple wireless networks structure comprising a plurality of beacon groups each comprising one or more devices communicating via an associated wireless network utilizing a superframe structure; wherein each device of each beacon group allocates a local control period and one or more neighbor control periods in each superframe; wherein the neighbor control periods in each beacon group cover all one or more control periods of other beacon groups detected by one or more of the devices in said each beacon group to an extent as said control periods do not overlap with the local control period in said each beacon group.
Abstract:
A method of wireless medium access for establishing a decentralized wireless network, the method comprising broadcasting of beacon frames by each of a plurality of devices; listening, at each device, for beacon frames of other devices; identifying, at each device, other devices who's beacon frames have been heard; and forming the decentralised wireless network as at least two dynamic networks, each dynamic network being centred around one of the devices and having said other devices who's beacon frames have been heard by said one device as network members.
Abstract:
A distributed wireless medium access control protocol is disclosed. According to the disclosed wireless medium access control protocol the medium access time is partitioned into equal sized slots, and a predetermined number of the slots forming a superframe. The protocol defines beaconing devices and passive devices. Each beaconing device designates one of the slots in the superframe as its beacon medium access slot, and broadcasts during that beacon medium access slot a beacon frame to other devices in wireless range of that beaconing device. A beacon frame collision detection and resolution procedure, and a procedure for reserving access time for communication between devices are also disclosed.