Abstract:
A capacitive touch sensing device by detecting induced electric field includes a differential amplifier, a resistor and a signal judgment circuit. The differential amplifier is electrically connected to a touch sensor. The resistor is electrically connected to a first input end and a second input end of the differential amplifier. The signal judgment circuit is electrically connected to an output end of the differential amplifier. As the touch sensor receives an induced electric field signal, the induced electric field signal is amplified by the differential amplifier and the signal judgment circuit determines whether the amplified induced electric field signal is a touch input.
Abstract:
A LED lamp includes a lamp base unit including an insulative base, a mating connection device configured like the base of a conventional incandescent bulb and located at the bottom side of the insulative base, an insulative hollow column located at the top side of the insulative, a heat sink including a plurality of radiation fins radially arranged around the insulative hollow column, a light-emitting module including a heat transfer plate fastened to the heat sink at the top, a circuit board supported on the heat transfer plate and light-emitting devices installed in the circuit board, and a light transmissive lampshade fastened to the heat sink and covered over the light-emitting module.
Abstract:
A motor energy recycling device is connected to a motor, a voltage regulating power capacitor, and a switch unit, for storing energy released by the motor. The motor energy recycling device include a switching device having first to third ends for being switched to connect the third end with the first end or second end; a first diode unit; a first capacitor connected to the motor and the first diode unit for using energy released by the motor to charge the first capacitor; a first inductor; a second capacitor; a second diode unit; and a second inductor connected between the second end and the second diode and between the voltage regulating power capacitor and the second capacitor for charging the voltage regulating power capacitor via the second inductor to accomplish an energy recycling.
Abstract:
A capacitive touch panel consists of a touch panel having a plural conductive wires, a multiplex selector electrically connected to the plural conductive wires of the touch panel, a first switch electrically connected to the multiplex selector, a first resistor having a first resistor value, a second switch electrically connected to the resistor and the first switch, a capacitor having a capacitance value, the capacitor electrically connected to the first switch and the second switch, a third switch electrically connected to the capacitor, an Analogue to Digital converter, a fourth switch electrically connected to the Analogue to Digital converter and the third switch, and an integrating circuit electrically connected to the second switch and the fourth switch.
Abstract:
A capacitive touch panel consists of a touch panel having a plural conductive wires, a multiplex selector electrically connected to the plural conductive wires of the touch panel, a first switch electrically connected to the multiplex selector, a first resistor having a first resistor value, a second switch electrically connected to the resistor and the first switch, a capacitor having a capacitance value, the capacitor electrically connected to the first switch and the second switch, a third switch electrically connected to the capacitor, an Analogue to Digital converter, a fourth switch electrically connected to the Analogue to Digital converter and the third switch, and an integrating circuit electrically connected to the second switch and the fourth switch.
Abstract:
A minute impedance variation detection device includes a differential amplifier, first and second impedances, a sensing electrode and a signal source. The differential amplifier has first and second input ends and an output end. The first impedance is connected to the first input end. The second impedance is connected to the second input end. The sensing electrode is connected to the second input end for sensing a touch and thus receiving a touch signal. The signal source is connected to the first impedance and the second impedance for providing an input signal inputted to the first impedance and the second impedance. The first impedance has an impedance value close to that of the second impedance. The differential amplifier is based on the input signal and the touch signal to differentially amplify the touch signal.
Abstract:
A safe electric power regulating circuit is connected between a power supply and a voltage boost/buck circuit to regulate the output voltage by the power supply to have a target voltage through the voltage boost/buck circuit. A switching device includes a switch unit, a first diode, and a first capacitor. The switch unit includes a first end, a second end, and a third end. The first end is connected to the power supply, and the second end is connected to the voltage boost/buck circuit. The switch unit is controlled to connect the third end to the first end or the second end. The first diode has an anode connected to the first end of the switch unit. The first capacitor has one end connected to the third end of the switch unit and the other end connected to circuit ground.
Abstract:
A minute impedance variation detection device includes a differential amplifier, first and second impedances, a sensing electrode and a signal source. The differential amplifier has first and second input ends and an output end. The first impedance is connected to the first input end. The second impedance is connected to the second input end. The sensing electrode is connected to the second input end for sensing a touch and thus receiving a touch signal. The signal source is connected to the first impedance and the second impedance for providing an input signal inputted to the first impedance and the second impedance. The first impedance has an impedance value close to that of the second impedance. The differential amplifier is based on the input signal and the touch signal to differentially amplify the touch signal.
Abstract:
A motor energy recycling device is connected to a motor, a voltage regulating power capacitor, and a switch unit, for storing energy released by the motor. The motor energy recycling device include a switching device having first to third ends for being switched to connect the third end with the first end or second end; a first diode unit; a first capacitor connected to the motor and the first diode unit for using energy released by the motor to charge the first capacitor; a first inductor; a second capacitor; a second diode unit; and a second inductor connected between the second end and the second diode and between the voltage regulating power capacitor and the second capacitor for charging the voltage regulating power capacitor via the second inductor to accomplish an energy recycling.