Abstract:
A method detects activity within a fixed view by comparing first and second images. The first and second images respectively include a plurality of blocks, and each of the blocks having a plurality of pixels. The method including: calculating an average value A for each block of the second image, each of the average values A is equal to an average of differences between pixels of one of the blocks of the second image and pixels of a corresponding block of the first image; calculating a mean difference B between average pixel values of the first and second images; calculating a difference V between average value A and mean difference B for each block of the second image, and selecting blocks of the second image that have corresponding differences V greater than a threshold value; and determining whether there is any object moving within the fixed view according to the selected blocks.
Abstract:
The present invention provides a method for concentrating particles or molecules and an apparatus thereof. The apparatus comprises a substrate, a conducting granule having nano-pores or nano-channels capable of permitting ion permeation, an electrolyte solution comprising counter-ions having an opposite electric property to the conducting granule, and an external field. Wherein, particles or molecules to be concentrated have an identical electric property as the conducting granule at a predefined pH value, and are added into the electrolyte solution with the predefined pH value. While the external electric field is applied across the reservoir where the conducting granule is sitting, the counter-ions exit from the nano-pores or nano-channels and such that a transient ion super-concentration phenomenon occurs at an ejecting pole on the conducting granule so as to concentrate the particles or molecules. Hence the present invention has potential application in bead-based molecular assays.
Abstract:
A motion detection method is used to abstract multiple moving objects. The motion detection method uses a first frame and a second frame to locate the moving objects appearing in a fixed scene. The method includes calculating a difference of each pixel between the first frame and the second frame, comparing each difference with a first threshold value for generating a plurality of first contours, comparing each difference with a second threshold value for generating a plurality of second contours, picking any of the second contours which overlapped with the first contours for generating corresponding moving blocks, determining whether the pixels located outside the moving blocks are background pixels, and comparing the parameter of each background pixel located inside the moving blocks with its corresponding background value for determining pixels related to the moving objects.
Abstract:
The present invention discloses a method for concentrating charged particles and an apparatus thereof. The method comprises: providing a substrate comprising a reservoir; disposing a conducting granule in the reservoir, the conducting granule being negatively charged or positively charged and comprising nano-pores or nano-channels capable of permitting ion permeation; disposing a buffer solution in the reservoir, the buffer solution comprising counter-ions having an opposite electric property to the conducting granule; adding the charged particles into the buffer solution, the charged particles being co-ions having an identical electric property as the conducting granule; and applying an external electric field on the conducting granule. While the external electric field is applied on the conducting granule, the counter-ions exit from the nano-pores or nano-channels and have a nonuniform concentration on a surface of the conducting granule such that a transient ion super-concentration phenomenon occurs at an ejecting pole on the conducting granule. Hence the present invention has potential application in bead-based molecular assays.
Abstract:
A microfluid mixer is provided. The non-linear electrokineticsis is applied to the design of the microfluid mixer. The microfluid mixer comprises a first and a second microfluidic elements, a mixing reservoir, and a micro channel unit, wherein the micro channel unit has at least two control channels for respectively connecting the first and the second microfluidic elements and the mixing reservoir. When two microfluids are mixed in the mixing reservoir, the electro-osmosis fluid field of the microfluids in the control channel of the mixing reservoir is changed by applying AC signal, such that powerful chaotic mixing effect is therefore produced by the two microfluids in the mixing reservoir.