Abstract:
An exemplary liquid crystal display (LCD) device (2) includes a first substrate (21) and a second substrate (22). A liquid crystal layer (23) having liquid crystal molecules is interposed between the first and second substrates. The liquid crystal molecules are bend-aligned such that the liquid crystal display device is able to operate in an optically compensated bend (OCB) mode. A first alignment layer (219) and a second alignment layer (229) are respectively disposed between the liquid crystal layer and the first and second substrates. A passivation layer (227) is disposed between the second alignment layer and the second substrate, which has different height.
Abstract:
An exemplary liquid crystal display device (2) includes: a first substrate (21) and a second substrate (22); a liquid crystal layer (23) having liquid crystal molecules located between the first and second substrates, the liquid crystal molecules are intermingled with chiral dopant, and are in a twist π cell state before the liquid crystal display device is turned on; and a plurality of pixel regions. Each of the pixel regions defines a reflection region and a transmission region, whereby a thickness of the liquid crystal layer in the reflection region is less than a thickness of the liquid crystal layer in the transmission region.
Abstract:
A liquid crystal display device that operates in optically compensated bend mode includes a gate driving circuit, a data driving circuit, and pixel units. The gate driving circuit is configured for providing a gate signal to each of the pixel units. The data driving circuit is configured for providing a first voltage corresponding to a black signal in a first sub frame of a frame divided into two sub frames to each of the pixel units via a corresponding data line, and a second voltage corresponding to a gray level display signal in a second sub frame of the frame to each of the pixel units.
Abstract:
An exemplary liquid crystal display (200) includes a first polarizer (211), a first biaxial compensating film (213), a first discotic liquid crystal film (214), a first substrate (215), a liquid crystal layer (220), a second substrate (235), a second discotic liquid crystal film (234), and a second polarizer (231), arranged in that order from one side of the liquid crystal display to an opposite side of the liquid crystal display. In summary, the first biaxial compensating film can compensate light in two perpendicular directions, thus improving contrast ratios in the two directions of the liquid crystal display and broadening a view angle of the liquid crystal display. Therefore, the liquid crystal display has an improved display performance.