Abstract:
An electrochromic device comprising a pair of glass, plastic plates or plastic films At least one plate or film, is provided with an electrically conductive coating. At least one plate or film and its conductive coating are transparent and the other may be mirrored. The plates or films are joined together and form a volume filled with an electrochromic medium which comprises at least one reducible electrochromic substance OX2 and at least one oxidizable electrochromic substance RED1. The OX2 corresponds to the formula in which R201 and R202, each are alkyl, cycloalkyl, alkenyl, aralkyl, aryl, −[C(PQ)]− or a bivalent bridge B, Z201 is a bivalent radical of the formulae CR210R211, O, C═O or o-phenylene, R210 and R211, each are hydrogen, methyl or ethyl, or CR210R211 is C3- to C7-cycloalkane-1,1-diyl. The rings C, D, E and F, each may be substituted by up to 4 alkyl and/or alkoxy radicals, or respectively, may be linked via a —(CH2)4— or —CH═CH—CH═CH— bridge. P and Q, each are —CN or —COO-alkyl. X— is an anion.
Abstract:
The invention relates to a method for producing electrochromic devices, in particular that having a large working surface area and which does not produce a volumetric shrinkage and can operate during a long maintenance of electrocoloured state of an electrochromic compound, high control voltages and polarity inversion. The inventive electrochromic device comprises at least two electrodes (1, 2), at least one of them being optically transparent. A closed sealed space is formed between said electrodes and filled with the electrochromic compound which is embodied in the form of a solid-like film. The inventive method for producing the electrochromic device consists in prefabricating an initial electrochromic compound in the form of a dispersed electrochromic system which contains at least a suspension and/or colloid. The dispersed medium of said system is embodied in the form of an electrochromic solution containing a liquid solvent, cathode and anode components, a disperse phase being embodied in the form of a finely dispersed polymer. Afterwards, the initial electrochromic compound is deaerated, thereby eliminating dissolved oxygen and air introduced by said finely dispersed polymer, and is used for filling the space between the electrodes.
Abstract:
An electrochromic device comprising a pair of glass or plastic plates or plastic films of which at least one plate or film, preferably both plates or films, are provided on in each case one side with an electrically conductive coating, of which at least one plate or film and its conductive coating is transparent, of which the other may be mirrored, and of which in the case of at least one of the two plates or films the electrically conductive layer can be divided into separate, individually contacted area segments and the conductive coatings can be connected at at least one point to an electrical conductor, where the plates or films are joined together via a sealing ring on the sides of their conductive coating, and the volume formed by the two plates or films and the sealing ring is filled with an electrochromic medium which comprises at least one reducible electrochromic compound OX2 and at least one oxidizable electrochromic compound RED1, in which the electrochromic medium also comprises a further reducible or an oxidizable electrochromic compound OX3 or RED3 respectively whose reduction or oxidation potential respectively has a value which is not greater than the reduction potential of OX2 or the oxidation potential of RED1, is distinguished by improved switching behavior.