摘要:
A variable camber leading edge device having a movable nose section and an upper flexible panel extending rearwardly from the nose section. To move the nose section between its upper cruise position and a high lift downwardly deflected position, there is attached to the nose section a generally arcuate cam track, having its forward and rear portions curving upwardly. The cam track is constrained to move in a generally arcuate path by means of two spaced pair of rollers, and it is driven by a pinion gear engaging an upwardly facing middle portion of the track.
摘要:
YAn aircraft leading edge slat is biased when at an extended location toward a first position wherein the trailing edge of the slat is a predetermined distance from the wing upper surface. The slat is pivotable to a second position, when aerodynamic forces acting on the wing overcome the biasing force, wherein the slat trailing edge is pivoted upward and forward, and the distance between the slat trailing edge and the wing upper surface is increased. The slat is retracted and extended by a drive track which is supported inside the wing by upper rollers located chordwise within the wing cavity, a lower front roller, and a pair of roller rings rotatably mounted at opposite sides of a rotary actuator pinion gear. The pinion gear engages the drive track and moves the slat between the extended and retracted positions.
摘要:
A variable camber apparatus for the leading and/or trailing edge of an airfoil that is operable for lift variation at high airspeeds of a jet aircraft such as for maneuvering of fighter aircraft. The cambering apparatus comprises an upper surface flexible skin panel which is supported along its inner edge by a wing spar assembly and along its outermost edge, by an airfoil edge forming structure. A hinged rib member, through a kinematic linkage mechanism associated between itself and the structure at the outermost edge of the airfoil section, bends and torsionally twists the airfoil edge forming structure about a relative spanwise axis. The kinematic linkage mechanism is slaved to rotating means of the rib member, for torsionally twisting the outermost edge of the airfoil section, upper surface portion, the precise amount of rotation so as to flexuously bend the upper surface and thereby contour it to conform to an aerodynamically predetermined curvilinear plot that will produce the desired camber and the change in the lift characteristics of the airfoil surface.
摘要:
An aircraft wing for use in a STOL aircraft incorporating upper surface blowing engines employs trailing edge flaps, including a main flap segment and an aft flap segment. The flaps are mounted on and externally hinged below the wing for movement between a retracted position and a plurality of extended positions. The main flap segment is hinged to its support for pivotal movement about a spanwise axis. The main flap segment is in a first position when retracted and normally remains in that position as the flaps are extended. When the flaps are extended and the main flap segment is in the first position, the upper airfoil surfaces of main flap segment and the aft flap segment form a smooth, continuous upper surface that extends downwardly and rearwardly from the upper airfoil surface of the wing. When the flaps are extended, the main flap segment can be pivoted about the spanwise axis to a second position to form spanwise slots between the forward portion of the main segment and the aft portion of the wing and between the aft portion of the main segment and the forward portion of the aft segment. In the first position, wherein the smooth, continuous, downwardly and rearwardly extending upper airfoil surface is formed, the trailing edge flap system can be employed with an upper surface blowing engine to take advantage of the Coanda effect to turn the exhaust stream issuing rearwardly and chordwise across the wing to turn the exhaust stream downwardly and rearwardly, thereby creating an upwardly directed, engine-generated lift component to augment the aerodynamic lift generated by the wing and flap structure. In the second position, the spanwise slots function to enhance the aerodynamic lift generated by the wing/flap combination as it moves through the air by allowing ambient air to flow through the slots.
摘要:
A variable camber apparatus for the leading edge of an airfoil that is operable for lift variation at high airspeeds of a jet aircraft such as for maneuvering of fighter aircraft. The cambering apparatus comprises an upper surface flexible skin panel which is supported along its inner edge by a wing spar assembly and along its outermost edge, by an airfoil edge forming structure. A hinged rib member, through a kinematic linkage mechanism associated between itself and the structure at the outermost edge of the airfoil section, bends and torsionally twists the airfoil edge forming structure about a relative spanwise axis. The kinematic linkage mechanism is slaved to the actuator of the rib member, for torsionally twisting the outermost edge of the airfoil section, upper surface portion, the precise amount of rotation so as to flexuously bend the upper surface and thereby contour it to conform to an aerodynamically predetermined curvilinear plot that will produce the desired camber and the change in the lift characteristics of the airfoil surface. Further, the combination of a variable camber wing leading edge mechanism with a high lift device, such as a leading edge flap, which is stowed within the airfoil envelope.
摘要:
A leading edge/anti-icing assembly for an airfoil comprising a leading edge slat having a nose section defining a heat exchange chamber. Anti-icing air directed into the heat exchange chamber flows rearwardly through the slat so as to have a deicing function, and is then discharged in a rearward direction from the trailing edge of the slat. Thus, the anti-icing air not only performs an anti-icing function over the upper surface of the slat, but also contributes to anti-icing over the upper surface portion of the main wing rearwardly of the trailing edge of the slat.
摘要:
An actuation and extension mechanism for aerodynamically high-lift devices such as a wing leading edge slat or a wing trailing edge flap; wherein an aerodynamic panel is connected to one end of an extendible track member that is supported and guided by its other end through rollers fixedly mounted to wing rib structure. The track member incorporates a separate rack gear segment internally thereof as part of the extension or retraction mechanism and this combination of track and gear segment provides the primary support and drive means to the high-lift device, without compromising the structural strength, safety, or operational reliability of said combination.
摘要:
Dual flap sections are supported by linkage, first for chordwise movement of the forward flap section rearwardly from the wing and for chordwise movement of the rear flap section rearwardly from the forward flap section, and then for tilting of the two flap sections conjointly to increase their angle of incidence relative to the wing. The forward flap section is supported by motion-amplifying compound linkage for effecting chordwise movement of the forward flap section relative to the wing, and the rear flap section is supported by motion-amplifying compound linkage from the forward flap section for effecting chordwise movement of the rear flap section relative to the forward flap section. Control mechanism for both motion-amplifying compound linkages is connected to the wing and is movable first to actuate the linkages primarily for shifting the two flap sections chordwise rearwardly from the wing and then primarily to tilt the foward and rear flap sections conjointly to increase their angle of incidence.
摘要:
A pair of motion-amplifying flap linkages connected externally to the undersurface of a tapered planform airfoil and being spaced apart spanwise thereof for a combined pseudo conical extension movement of a tapered-chord flap section. The pair of flap linkage mechanisms conjointly first extending the tapered chord flap section chordwise of the airfoil and then rotatably tilting the flap to increase its angle of incidence, such that the chordwise length of movement and rotation of the flap, is proportional to the length of the airfoil chord at that cross-section of the airfoil; and approximates a conic motion of the flap relative to the airfoil.
摘要:
A variable camber apparatus for the leading and/or trailing edge of an airfoil that is operable for lift variation at high airspeeds of a jet aircraft such as for maneuvering of fighter aircraft. The cambering apparatus comprises an upper surface flexible skin panel which is supported along its inner edge by a wing spar assembly and along its outermost edge, by an airfoil edge forming structure. A hinged rib member, through a kinematic linkage mechanism associated between itself and the structure at the outermost edge of the airfoil section, bends and torsionally twists the airfoil edge forming structure about a relative spanwise axis. The kinematic linkage mechanism is slaved to rotating means of the rib member, for torsionally twisting the outermost edge of the airfoil section, upper surface portion, the precise amount of rotation so as to flexuously bend the upper surface and thereby contour it to conform to an aerodynamically predetermined curvilinear plot that will produce the desired camber and the change in the lift characteristics of the airfoil surface.