摘要:
In a method and apparatus for time-resolved phase-contrast magnetic resonance (MR) imaging with speed encoding, MR signals are detected with multiple receivers in each of numerous time segments in order to acquire raw data in each of the time segments, in each case for numerous MR images with different speed encodings. Stationary image points and/or non-stationary image points are identified, dependent on the detected MR signals. A mask is defined, dependent on the identified stationary image points and/or the non-stationary image points, wherein the mask is locally variable. The numerous MR images for the numerous time segments are reconstructed from the acquired raw data, wherein the reconstruction occurs in an iterative process and with a temporal regularization, which is dependent on the mask.
摘要:
In a method to generate magnetic resonance (MR) images of an examination subject, MR signals are detected simultaneously with multiple coils, each coil having its own coil characteristic. In the detection of the MR signals, raw data space is incompletely filled with MR signals; with raw data space being undersampled in a central raw data region with a coherent acquisition pattern that is composed of a spatially repeating set of raw data points; and raw data space outside of the central raw data region is sampled with an incoherent acquisition pattern. The MR image is reconstructed from the detected MR signals, step-by-step in an iterative reconstruction procedure using a reconstruction matrix A, starting from an initial estimate; wherein the reconstruction matrix has continuing information about the coil characteristics with which the MR signals were detected.
摘要:
A method is disclosed for calculating an MR image of a target layer from an examination object, wherein the MR image is calculated using iterative reconstruction. In at least one embodiment, the method includes: acquiring MR data from an initial layer of the examination object, determining information produced by the examination object from the acquired MR data of the initial layer, determining a penalty term from the information produced by the examination object, and performing the iterative reconstruction of the MR image for the target layer taking into account the determined penalty term.
摘要:
In a method to generate magnetic resonance (MR) images of an examination subject, MR signals are detected simultaneously with multiple coils, each coil having its own coil characteristic. In the detection of the MR signals, raw data space is incompletely filled with MR signals; with raw data space being undersampled in a central raw data region with a coherent acquisition pattern that is composed of a spatially repeating set of raw data points; and raw data space outside of the central raw data region is sampled with an incoherent acquisition pattern. The MR image is reconstructed from the detected MR signals, step-by-step in an iterative reconstruction procedure using a reconstruction matrix A, starting from an initial estimate; wherein the reconstruction matrix has continuing information about the coil characteristics with which the MR signals were detected.
摘要:
In a method and apparatus for time-resolved phase-contrast magnetic resonance (MR) imaging with speed encoding, MR signals are detected with multiple receivers in each of numerous time segments in order to acquire raw data in each of the time segments, in each case for numerous MR images with different speed encodings. Stationary image points and/or non-stationary image points are identified, dependent on the detected MR signals. A mask is defined, dependent on the identified stationary image points and/or the non-stationary image points, wherein the mask is locally variable. The numerous MR images for the numerous time segments are reconstructed from the acquired raw data, wherein the reconstruction occurs in an iterative process and with a temporal regularization, which is dependent on the mask.
摘要:
A method is disclosed for calculating an MR image of a target layer from an examination object, wherein the MR image is calculated using iterative reconstruction. In at least one embodiment, the method includes: acquiring MR data from an initial layer of the examination object, determining information produced by the examination object from the acquired MR data of the initial layer, determining a penalty term from the information produced by the examination object, and performing the iterative reconstruction of the MR image for the target layer taking into account the determined penalty term.