Abstract:
A Near Field Communications (NFC) tag includes a housing and a magnet carried by the housing and configured to be magnetically sensed by a magnetic sensor carried by a communications device to activate an NFC circuit within the communications device to communicate using an NFC communications protocol. A data store stores data regarding a function of the communications device to be magnetically coupled by the magnet. The data store is configured to be read by the communications device using an NFC communications protocol after the NFC circuit had been activated.
Abstract:
A dual-mode mobile communication device is provided including a device housing having a front surface, a rear surface and a plurality of side surfaces coupling the front surface to the rear surface. The dual-mode device includes a transceiver for sending and receiving voice and data communications is integrated into the device housing, a display, mounted within the front surface of the device housing, for displaying information to a user of the device regarding voice and data communications, a QWERTY keyboard mounted below the display and within the front surface of the device housing, for generating data communications, and a microphone and a speaker for generating voice communications, wherein the microphone is mounted below the display within the front surface of the device housing and the speaker is mounted above the display within the front surface of the device housing.
Abstract:
A mobile wireless communications device includes a housing and a circuit board carried by the housing. Radio frequency (RF) circuitry and a processor are carried by the housing and operative with each other. A Near Field Communications (NFC) circuit is connected to the processor for communicating using an NFC communications protocol. A magnetic sensor is supported by the housing and connected to the processor for sensing a magnetic field and generating a signal to the processor and in response, the processor activating the NFC circuit for transmitting or receiving data using the NFC communications protocol.
Abstract:
An adaptive pedestrian billboard system may include a display for passing pedestrian traffic, and a memory for storing a plurality of notifications having different visual feature detail levels. The system may further include a controller configured to cooperate with the display and the memory for determining a density of the passing pedestrian traffic, select notifications from the memory based upon the density of the passing pedestrian traffic so that notifications for higher density passing pedestrian traffic have lower visual feature detail levels and so that notifications for lower density passing pedestrian traffic have higher visual feature detail levels, and display the selected notifications on the display.
Abstract:
A method and hierarchical menu is provided for displaying on the screen of a wireless handheld electronic device an extended menu or a short menu, which is a subset of the corresponding extended menu. The method includes displaying a page on a screen and receiving an ambiguous request/selection when no menu is displayed. In response to the ambiguous selection, a short menu corresponding to the displayed page is displayed on the screen. Various short menus are provided with their respective menu items being dependent and adjustable based upon the position of a cursor on the displayed page, the currently opened application, and/or the previous selections. Further, a selection from the short menu is capable of displaying the extended menu corresponding thereto.
Abstract:
A wireless communications system may include a user-wearable device including a clasp having open and closed positions, a first wireless security circuit (WSC), and a first controller coupled to the clasp and the first WSC. The system may further include a mobile wireless communications device including a portable housing, an input device(s), a second WSC carried by the portable housing and configured to communicate with the first WSC when in close proximity therewith, and a second controller carried by the portable housing and coupled to the second WSC and the input device(s). The second controller may be configured to enable mobile wireless communications device(s) function based upon a manual entry of an authentication code via the input device(s), and bypass the manual entry and enable the mobile wireless communications device function(s) based upon a communication from the user-wearable device and a position of the clasp.
Abstract:
A method of controlling a portable electronic device that has a touch screen display includes providing a graphical user interface including an area defined by a boundary, detecting a touch event at a touch location within the area defined by the boundary on the touch screen display, determining if the touch location has moved to a new location outside of the area defined by the boundary; and performing an action in response to detecting the touch event at the touch location within the area defined by the boundary and determining that the touch location has moved from the area defined by the boundary to the new location outside of the area defined by the boundary.
Abstract:
An improved handheld electronic device having a reduced keyboard provides facilitated language entry by making available to a user certain words that a user may reasonably be expected to enter. In some situations, certain words can be stored, for example, in a temporary dictionary for use in particular situations. For instance, the names of the recipients of an electronic message might be stored in a temporary dictionary for rapid retrieval when entering a salutation in the message. As another example, a number of the words in an existing electronic message may be stored in a temporary dictionary and made available to a user when replying to or forwarding the message since the existing message might include words that the user might reasonably be expected to type in the reply message or the forwarded message.
Abstract:
A hand-held electronic device with a keyboard, thumbwheel, display and associated software is optimized for use of the device with the thumbs. The associated software has a plurality of features to optimize efficient use of the limited keyboard space and encourage the use of the device by thumb-based data entry through the thumbwheel and/or through a combination of minimal number of keystrokes. Software features include international character scrolling, and auto-capitalization. The keys on the device keyboard are optimally shaped and configured for thumb-based input. In addition, the thumbwheel is inclined between the front and a side edge of the device so as to be reachable by either the thumb or index finger of the user's hand at the side edge of the device.
Abstract:
A handheld wireless communication device cradleable in one hand by an operator during text entry. A display, key field and trackball are all located on a front face of the device. Alphanumeric input keys include several alphabetic keys with letters arranged in a traditional (QWERTY), but non-ITU Standard E.161 telephone letter layout. A microprocessor is provided that receives operator commands from the keys and the trackball navigation tool and which affects corresponding changes to the display based on user input. The keys of the key field are arranged in rows and columns and at least one of the rows and columns is arranged with a long axis thereof radially oriented relative to the trackball navigation tool.