Abstract:
A system and method for characterizing a pattern, in which a spiking neural network having at least one layer of neurons is provided. The spiking neural network has a plurality of connected neurons for transmitting signals between the connected neurons. A model for inducing spiking in the neurons is specified. Each neuron is connected to a global regulating unit for transmitting signals between the neuron and the global regulating unit. Each neuron is connected to at least one other neuron for transmitting signals from this neuron to the at least one other neuron, this neuron and the at least one other neuron being on the same layer. Spiking of each neuron is synchronized according to a number of active neurons connected to the neuron. At least one pattern is submitted to the spiking neural network for generating sequences of spikes in the spiking neural network, the sequences of spikes (i) being modulated over time by the synchronization of the spiking and (ii) being regulated by the global regulating unit. The at least one pattern is characterized according to the sequences of spikes generated in the spiking neural network.
Abstract:
A spiking neural network has a layer of connected neurons exchanging signals. Each neuron is connected to at least one other neuron. A neuron is active if it spikes at least once during a time interval. Time-varying synaptic weights are computed between each neuron and at least one other neuron connected thereto. These weights are computed according to a number of active neurons that are connected to the neuron. The weights are also computed according to an activity of the spiking neural network during the time interval. Spiking of each neuron is synchronized according to a number of active neurons connected to the neuron and according to the weights. A pattern is submitted to the spiking neural network for generating sequences of spikes, which are modulated over time by the spiking synchronization. The pattern is characterized according to the sequences of spikes generated in the spiking neural network.