摘要:
Predicting impact of future actions on subsequent creditworthiness involves developing a prediction model that predicts a statistical interaction of performance expectation with likely post-scoring behavior. Including sensitivity to new, post-scoring date credit behaviors in the analytic solution greatly improves snapshot score predictions. The modeling approach involves multiple snapshots: predictive and performance snapshots, plus an intermediate snapshot shortly after the predictive snapshot to quantify interim consumer behavior post-scoring date. Predictive interaction variables are calculated on the predictive data using simulated consumer profiles before and after assuming a sizeable simulated balance to infer the consumer's tolerance for incremental future debt. Using an adjustor approach in predicting capacity allows isolation of the confounding effect of risk from the capacity determination. A resulting capacity index can be used to rank order originations and line increases according to capacity in consumer, bankcard, automobile and mortgage lending.
摘要:
Certain embodiments of the invention may include systems, methods, and apparatus for determining fraud risk associated with a credit application. According to an exemplary embodiment of the invention, a method is provided for receiving applicant information associated with the application; searching one or more consumer identity repositories for prior usage of the applicant information; generating a plurality of identity characteristics corresponding to the prior usage of the applicant information; assigning the application to one of a plurality of segments based at least in part on the searching; scoring the application with a predictive scoring model to determine a risk score based at least in part on the identity characteristics; determining identity fraud risk types associated with the application; and outputting the risk score and one or more indicators of the determined identity fraud risk types.
摘要:
Predicting impact of future actions on subsequent creditworthiness involves developing a prediction model that predicts a statistical interaction of performance expectation with likely post-scoring behavior. Including sensitivity to new, post-scoring date credit behaviors in the analytic solution greatly improves snapshot score predictions. The modeling approach involves multiple snapshots: predictive and performance snapshots, plus an intermediate snapshot shortly after the predictive snapshot to quantify interim consumer behavior post-scoring date. Predictive interaction variables are calculated on the predictive data using simulated consumer profiles before and after assuming a sizeable simulated balance to infer the consumer's tolerance for incremental future debt. Using an adjustor approach in predicting capacity allows isolation of the confounding effect of risk from the capacity determination. A resulting capacity index can be used to rank order originations and line increases according to capacity in consumer, bankcard, automobile and mortgage lending.