摘要:
An ultrasound imaging system and ultrasound review station with a biophysical detector are provided. A biophysical attribute of a user is used to authorize (i.e., identify and authenticate) the user. Because the identification and authentication procedures are combined into a single step, the time and effort required for an authorized user to gain access to the ultrasound imaging system or ultrasound review station is greatly reduced. Using a biophysical attribute also makes the system or station practically impervious to impostors since biophysical attributes are unique and virtually impossible to duplicate. Also, since a user cannot forget or lose a biophysical attribute, the risk that an authorized user will be denied access is eliminated.
摘要:
A medical image storage system is provided that integrates a clinical information system with a medical image management system. Such an integrated system can be used in a method that uses clinical information associated with a medical image to determine when and where the medical image should be stored. Because the probability of a medical image being accessed is generally governed by the diagnostic significance of the image, this integrated system provides more efficient storage of medical images as compared to conventional systems that operate independently of diagnostic information.
摘要:
A method and system are provided for facilitating interaction between image and non-image sections displayed on an image review station. With the preferred embodiments, a user can interact with image and non-image sections without changing focus between the sections, thereby allowing the user to be much more efficient in the use of the medical image review station. In one presently preferred embodiment, an image review station processor determines which operation should be performed based on a position of a displayed pointer, regardless of which section is under focus. In another presently preferred embodiment, a user interface device is dedicated to either an image or non-image section such that input from the dedicated user interface device will be applied to the corresponding section regardless of which section is in focus. In a third presently preferred embodiment, the processor determines what operation will be performed based on the type of command received by a voice recognition user interface device, regardless of which section is under focus.
摘要:
A method and system for reducing speckle for two and three-dimensional images is disclosed. For two-dimensional imaging, a one and a half or a two-dimensional transducer is used to obtain sequential, parallel or related frames of elevation spaced data. The frames are compounded to derive a two-dimensional image. For three-dimensional imaging, various pluralities of two-dimensional frames of data spaced in elevation are compounded into one plurality of spaced two-dimensional frames of data. The frames of data are then used to derive a three dimensional set of data, such as by interpolation. Alternatively, the various pluralities are used to derive a three-dimensional set of data. An anisotropic filter is applied to the set of data. The anisotropic filter filters at least along the elevation dimension. In either situation, various displays may be generated from the final three-dimensional set of data. A method and system for adjustably generating two and three-dimensional representations is also disclosed. For three-dimensional imaging, at least two sets of three-dimensional data corresponding respectively to two types of Doppler or B-mode data are generated. The sets of data are then combined. An image or a quantity may be obtained from the combined data. By combining after generating the three-dimensional sets of data, the same data (sets of data) may be combined multiple times pursuant to different relationships. Thus, a user may optimize the image or quantity. Likewise, frames of data may be combined pursuant to different persistence parameters, such as different finite impulse response filter size and coefficients. The frames of data may then be re-combined pursuant to different persistence parameters. Original ultrasound data may also be used to re-generate an imaging using the same ultrasound image processes as used for a previous image. APPENDIX A Filter at Plane Y = - 2 X → [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Z ↓ Filter at Plane Y = - 1 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = 0 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = + 1 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = + 2 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] The filter perform no filtering in the X, Z plane. It filters (low pass) contributions from neighboring elements in only the Y direction. The filter may be implemented as a 1-D low pass filter in the Y-direction [0.2, 0.4, 1.0, 0.4, 0.2]=(a 1×5×1 anisotropic filter).
摘要:
A method and system for reducing speckle for two and three-dimensional images is disclosed. For two-dimensional imaging, a one and a half or a two-dimensional transducer is used to obtain sequential, parallel or related frames of elevation spaced data. The frames are compounded to derive a two-dimensional image. For three-dimensional imaging, various pluralities of two-dimensional frames of data spaced in elevation are compounded into one plurality of spaced two-dimensional frames of data. The frames of data are then used to derive a three dimensional set of data, such as by interpolation. Alternatively, the various pluralities are used to derive a three-dimensional set of data. An anisotropic filter is applied to the set of data. The anisotropic filter filters at least along the elevation dimension. In either situation, various displays may be generated from the final three-dimensional set of data. A method and system for adjustably generating two and three-dimensional representations is also disclosed. For three-dimensional imaging, at least two sets of three-dimensional data corresponding respectively to two types of Doppler or B-mode data are generated. The sets of data are then combined. An image or a quantity may be obtained from the combined data. By combining after generating the three-dimensional sets of data, the same data (sets of data) may be combined multiple times pursuant to different relationships. Thus, a user may optimize the image or quantity. Likewise, frames of data may be combined pursuant to different persistence parameters, such as different finite impulse response filter size and coefficients. The frames of data may then be re-combined pursuant to different persistence parameters. Original ultrasound data may also be used to re-generate an imaging using the same ultrasound image processes as used for a previous image.
摘要:
The preferred embodiments described herein provide a medical diagnostic ultrasound imaging system and method for network management. In one preferred embodiment, a medical diagnostic ultrasound imaging system network is presented comprising first and second medical diagnostic ultrasound imaging systems coupled with a processor. An error message is sent from the first medical diagnostic ultrasound imaging system to the processor, and the processor automatically analyzes and responds to the error message. In another preferred embodiment, configuration information from the first and second medical diagnostic ultrasound imaging systems is sent to the processor. Based on the configuration information sent from the first medical diagnostic ultrasound imaging system, the processor automatically selects a software application from a plurality of software applications and sends the selected software application to the first medical diagnostic ultrasound imaging system.
摘要:
The preferred embodiments include a method and system for simultaneously displaying diagnostic medical ultrasound image clips on one or more monitors without degradation in display frame rate. In one preferred embodiment, compressed ultrasound image frames are sent to a video display system for decompression. Because compressed image frames are sent, there is no degradation in frame rate caused by the bandwidth limitations of the CPU/video display system bus. Further, because the video display system decompress the compressed image frames faster than decompression software executed by a CPU, there is no degradation in frame rate caused by power limitations of the CPU. The video display system can also be used to control the frame rate, luminance, and size of individual ultrasound image clips. The preferred video display system described herein finds particular utility in ultrasound examinations performed in cardiac, radiological, obstetrical, and neo-natal ultrasound examinations.
摘要:
A system and method are provided for accessing stored ultrasound images and other digital medical images. A client application sends a request comprising information identifying a unique medical study to a server application. The information identifying a particular study can be in the form of a patient accession number and can be provided to the client application with a keyboard or an automatic information reader, such as a bar-code reader, a camera, or a voice recognition device. Upon receiving the request, the server application automatically sends the client application a digital medical image associated with the study. The client application then displays the digital medical image to the user.