Abstract:
A flat lamp with horizontal facing electrodes is provided, in which a front substrate and a rear substrate are spaced such as to face each other. Walls between the front and rear substrates form a discharging space filled with a discharge gas. A plurality of front electrodes and a plurality of rear electrodes are provided on facing surfaces of the front and rear substrates, respectively. The front and rear electrodes, formed in strips, are arranged in such a way that the front electrodes alternate with the rear electrodes. Accordingly, the discharging distance between front and rear electrodes is lengthened, and many fine discharging operations occur between tip electrodes extending from the lateral sides of the electrode strips and flat portions of corresponding electrode strips. Therefore, a current concentration is prevented, thereby achieving uniform discharging. Also, brightness of the flat lamp increases.
Abstract:
In an Alternating Current (AC) plasma display panel, a rear substrate and a front substrate are arranged to face each other. Discharge cells are formed between the rear and front substrates. A plurality of strip-shaped address electrodes are arranged on the rear substrate. A first dielectric layer is arranged on the rear substrate, and the address electrodes are buried in the first dielectric layer. A plurality of strip-shaped sustaining electrodes are arranged in pairs on the rear substrate to cross the address electrodes at right angles. A second dielectric layer is arranged on the rear substrate, and the sustaining electrodes are buried in the second dielectric layer. A protective layer is arranged on a bottom surface of the second dielectric layer. A plurality of barrier ribs are arranged between the front and rear substrates and define the discharge cells. The lateral sides of each of the barrier ribs are coated with a fluorescent layer. Each of the address electrodes includes thick portions disposed below the discharge cells and thin portions disposed between adjacent thick portions. The thick portions are thicker than the thin portions.
Abstract:
A plasma flat lamp includes an upper plate, a lower plate separated a predetermined distance from the upper plate, a wall portion for forming a sealed discharge space between the upper and lower plates, a discharge gas filled in the discharge space, a first pair of electrodes including a first upper plate electrode and a first lower plate electrode arranged to face each other on each of the upper and lower plates with the discharge space interposed therebetween, and a second pair of electrodes including a second upper plate electrode separated a predetermined distance from the first upper plate electrode and a second lower plate electrode separated a predetermined distance from the first lower plate electrode arranged to face each other on each of the upper and lower plates with the discharge space interposed therebetween. Thus, the plasma flat lamp according to the present invention has a stable discharge feature which is a merit of the conventional electrodes discharge flat lamp and a high luminance of light emission which is a feature of the facing surfaces discharging type, while not having a low luminance and unstable discharge feature of the conventional surface discharge type flat lamp and facing electrodes discharging flat lamp, respectively.