摘要:
A system and method to navigate through a media item catalog and generate recommendations using behavioral metrics such as correlation metrics (FIGS. 1,2) from a knowledge base (400) of mediasets (FIG. 4, 1-7). One implementation uses a knowledge base comprising a collection of mediasets such as groupings of selected video items. Various metrics (Metric 1-Metric m) among media items (m1 . . . ) are considered by analyzing how the media items are grouped to form the sets in the knowledge base (400). Such metrics preferably are stored in a matrix (100) that allows the system to dynamically build appropriate navigation lists (FIG. 3) from media items that a user selects (FIG. 5).
摘要:
Systems and methods are disclosed for identifying a new set of media items in response to an input set (or “query set”) of media items and knowledge base metrics. The system uses a knowledge base consisting of a collection of mediasets. Various metrics among media items are considered by analyzing how the media items are grouped to form the mediasets in the knowledge base. Such association or “similarity” metrics are preferably stored in a matrix form that allows the system to efficiently identify a new set of media items that complements the input set of media items.
摘要:
A system and method to navigate through a media item catalog and generate recommendations using behavioral metrics such as correlation metrics (FIGS. 1,2) from a knowledge base (400) of mediasets (FIG. 4, 1-7). One implementation uses a knowledge base comprising a collection of mediasets such as groupings of selected video items. Various metrics (Metric 1-Metric m) among media items (m1 . . . ) are considered by analyzing how the media items are grouped to form the sets in the knowledge base (400). Such metrics preferably are stored in a matrix (100) that allows the system to dynamically build appropriate navigation lists (FIG. 3) from media items that a user selects (FIG. 5).
摘要:
Disclosed are embodiments of systems and methods for prioritizing mobile media player files by providing for the automated addition and/or deletion of media items for a mobile media player. In some embodiments, a statistical method may be provided for inferring which media items on a mobile media player should be deleted based on, for example, user taste data. In some embodiments, new media items may be loaded onto a user's mobile media player by creating one or more playlists from a playlist builder. The playlist(s) may be created by using user taste data. Rankings may also be created to determine an order for deletion of the media items currently on a mobile media player and/or for addition of new media items to the device.
摘要:
Systems and methods are disclosed for identifying a new set of media items in response to an input set (or “query set”) of media items and knowledge base metrics. The system uses a knowledge base consisting of a collection of mediasets. Various metrics among media items are considered by analyzing how the media items are grouped to form the mediasets in the knowledge base. Such association or “similarity” metrics are preferably stored in a matrix form that allows the system to efficiently identify a new set of media items that complements the input set of media items.
摘要:
Disclosed are embodiments of systems and methods for prioritizing mobile media player files by providing for the automated addition and/or deletion of media items for a mobile media player. In some embodiments, a statistical method may be provided for inferring which media items on a mobile media player should be deleted based on, for example, user taste data. In some embodiments, new media items may be loaded onto a user's mobile media player by creating one or more playlists from a playlist builder. The playlist(s) may be created by using user taste data. Rankings may also be created to determine an order for deletion of the media items currently on a mobile media player and/or for addition of new media items to the device.
摘要:
Disclosed are embodiments of systems and methods for prioritizing mobile media player files by providing for the automated addition and/or deletion of media items for a mobile media player. In some embodiments, a statistical method may be provided for inferring which media items on a mobile media player should be deleted based on, for example, user taste data. In some embodiments, new media items may be loaded onto a user's mobile media player by creating one or more playlists from a playlist builder. The playlist(s) may be created by using user taste data. Rankings may also be created to determine an order for deletion of the media items currently on a mobile media player and/or for addition of new media items to the device.
摘要:
Systems and methods are disclosed for identifying a new set of media items in response to an input set (or “query set”) of media items and knowledge base metrics. The system uses a knowledge base consisting of a collection of mediasets. Various metrics among media items are considered by analyzing how the media items are grouped to form the mediasets in the knowledge base. Such association or “similarity” metrics are preferably stored in a matrix form that allows the system to efficiently identify a new set of media items that complements the input set of media items.
摘要:
Disclosed are embodiments of systems and methods for prioritizing mobile media player files by providing for the automated addition and/or deletion of media items for a mobile media player. In some embodiments, a statistical method may be provided for inferring which media items on a mobile media player should be deleted based on, for example, user taste data. In some embodiments, new media items may be loaded onto a user's mobile media player by creating one or more playlists from a playlist builder. The playlist(s) may be created by using user taste data. Rankings may also be created to determine an order for deletion of the media items currently on a mobile media player and/or for addition of new media items to the device.
摘要:
A system and method to navigate through a media item catalog and generate recommendations using behavioral metrics such as correlation metrics (FIGS. 1,2) from a knowledge base (400) of mediasets (FIG. 4, 1-7). One implementation uses a knowledge base comprising a collection of mediasets such as groupings of selected video items. Various metrics (Metric 1-Metric m) among media items (m1 . . . ) are considered by analyzing how the media items are grouped to form the sets in the knowledge base (400). Such metrics preferably are stored in a matrix (100) that allows the system to dynamically build appropriate navigation lists (FIG. 3) from media items that a user selects (FIG. 5).