Variational mode seeking
    2.
    发明授权
    Variational mode seeking 有权
    变化模式寻求

    公开(公告)号:US08484253B2

    公开(公告)日:2013-07-09

    申请号:US12982915

    申请日:2010-12-31

    申请人: Bo Thiesson Jingu Kim

    发明人: Bo Thiesson Jingu Kim

    IPC分类号: G06F17/30 G06K9/62

    CPC分类号: G06F17/30705 G06K9/6226

    摘要: A mode-seeking clustering mechanism identifies clusters within a data set based on the location of individual data point according to modes in a kernel density estimate. For large-scale applications the clustering mechanism may utilize rough hierarchical kernel and data partitions in a computationally efficient manner. A variational approach to the clustering mechanism may take into account variational probabilities, which are restricted in certain ways according to hierarchical kernel and data partition trees, and the mechanism may store certain statistics within these trees in order to compute the variational probabilities in a computational efficient way. The clustering mechanism may use a two-step variational expectation and maximization algorithm and generalizations hereof, where the maximization step may be performed in different ways in order to accommodate different mode-seeking algorithms, such as the mean shift, mediod shift, and quick shift algorithms.

    摘要翻译: 寻找模式的聚类机制根据核密度估计中的模式,根据各个数据点的位置来识别数据集内的簇。 对于大规模应用,聚类机制可以以计算有效的方式利用粗略的分级内核和数据分区。 聚类机制的变分方法可以考虑到根据分层内核和数据分区树在某些方面受到限制的变分概率,并且该机制可以在这些树中存储某些统计量,以便计算有效率的变分概率 办法。 聚类机制可以使用两步变化期望和最大化算法及其概括,其中最大化步骤可以以不同的方式执行,以便适应不同的寻呼算法,例如平均偏移,中间偏移和快速移位 算法。

    Variational Mode Seeking
    3.
    发明申请
    Variational Mode Seeking 有权
    变化模式寻求

    公开(公告)号:US20120173527A1

    公开(公告)日:2012-07-05

    申请号:US12982915

    申请日:2010-12-31

    申请人: Bo THIESSON Jingu KIM

    发明人: Bo THIESSON Jingu KIM

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30705 G06K9/6226

    摘要: A mode-seeking clustering mechanism identifies clusters within a data set based on the location of individual data point according to modes in a kernel density estimate. For large-scale applications the clustering mechanism may utilize rough hierarchical kernel and data partitions in a computationally efficient manner. A variational approach to the clustering mechanism may take into account variational probabilities, which are restricted in certain ways according to hierarchical kernel and data partition trees, and the mechanism may store certain statistics within these trees in order to compute the variational probabilities in a computational efficient way. The clustering mechanism may use a two-step variational expectation and maximization algorithm and generalizations hereof, where the maximization step may be performed in different ways in order to accommodate different mode-seeking algorithms, such as the mean shift, mediod shift, and quick shift algorithms.

    摘要翻译: 寻找模式的聚类机制根据核密度估计中的模式,根据各个数据点的位置来识别数据集内的簇。 对于大规模应用,聚类机制可以以计算有效的方式利用粗略的分层内核和数据分区。 聚类机制的变分方法可以考虑到根据分层内核和数据分区树在某些方面受到限制的变分概率,并且该机制可以在这些树中存储某些统计量,以便计算有效率的变分概率 办法。 聚类机制可以使用两步变化期望和最大化算法及其概括,其中最大化步骤可以以不同的方式执行,以便适应不同的寻呼算法,例如平均偏移,中间偏移和快速移位 算法。