摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet configured to generate a static magnetic field at least in a MR examination region from which MR data are acquired. Radiation detectors are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region. The radiation detectors include electron multiplier elements having a direction of electron acceleration arranged substantially parallel or anti-parallel with the static magnetic field. In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces disposed on opposite sides of a magnetic resonance examination region, and the radiation detectors include first and second arrays of radiation detectors disposed with the first and second spaced apart magnet pole pieces.
摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet (10, 110) configured to generate a static magnetic field (B0) at least in a MR examination region (12) from which MR data are acquired. Radiation detectors (40, 41, 140) are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region (70). The radiation 5 detectors include electron multiplier elements (60, 160) having a direction of electron acceleration (ae) arranged substantially parallel or anti-parallel with the static magnetic field (B0). In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces (14, 15) disposed on opposite sides of a magnetic 10 resonance examination region, and the radiation detectors include first and second arrays (40, 41) of radiation detectors disposed with the first and second spaced apart magnet pole pieces.
摘要:
Systems and methods for monitoring in vivo release of therapeutic and/or diagnostic agents, e.g., drugs, are provided. The disclosed systems and methods use a contrast agent and Overhauser-enhanced nuclear magnetic resonance (NMR) to monitor and/or measure the concentration and distribution of the contrast agent. Provided the contrast agent and the therapeutic/diagnostic agent have similar pharmaco-kinetics, the disclosed system/method may also be used to monitor and/or measure the concentration of such therapeutic/diagnostic agent (e.g., a drug), e.g., in the form of a volume-averaged signal and/or dynamic two-dimensional or three-dimensional images. In exemplary embodiments of the present disclosure, the therapeutic/diagnostic agent and the contrast agent are introduced to the body in an encapsulated form, e.g., within hollow nanoparticles.
摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet (10, 110) configured to generate a static magnetic field (B0) at least in a MR examination region (12) from which MR data are acquired. Radiation detectors (40, 41, 140) are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region (70). The radiation 5 detectors include electron multiplier elements (60, 160) having a direction of electron acceleration (ae) arranged substantially parallel or anti-parallel with the static magnetic field (B0). In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces (14, 15) disposed on opposite sides of a magnetic 10 resonance examination region, and the radiation detectors include first and second arrays (40, 41) of radiation detectors disposed with the first and second spaced apart magnet pole pieces.
摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet configured to generate a static magnetic field at least in a MR examination region from which MR data are acquired. Radiation detectors are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region. The radiation detectors include electron multiplier elements having a direction of electron acceleration arranged substantially parallel or anti-parallel with the static magnetic field. In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces disposed on opposite sides of a magnetic resonance examination region, and the radiation detectors include first and second arrays of radiation detectors disposed with the first and second spaced apart magnet pole pieces.
摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet configured to generate a static magnetic field at least in a MR examination region from which MR data are acquired. Radiation detectors are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region. The radiation detectors include electron multiplier elements having a direction of electron acceleration arranged substantially parallel or anti-parallel with the static magnetic field. In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces disposed on opposite sides of a magnetic resonance examination region, and the radiation detectors include first and second arrays of radiation detectors disposed with the first and second spaced apart magnet pole pieces.
摘要:
In a combined system, a magnetic resonance (MR) scanner includes a magnet configured to generate a static magnetic field at least in a MR examination region from which MR data are acquired. Radiation detectors are configured to detect gamma rays generated by positron-electron annihilation events in a positron emission tomography (PET) examination region. The radiation detectors include electron multiplier elements having a direction of electron acceleration arranged substantially parallel or anti-parallel with the static magnetic field. In some embodiments, the magnet is an open magnet having first and second spaced apart magnet pole pieces disposed on opposite sides of a magnetic resonance examination region, and the radiation detectors include first and second arrays of radiation detectors disposed with the first and second spaced apart magnet pole pieces.