RECOGNITION VIA HIGH-DIMENSIONAL DATA CLASSIFICATION
    1.
    发明申请
    RECOGNITION VIA HIGH-DIMENSIONAL DATA CLASSIFICATION 有权
    通过高分辨率数据分类识别

    公开(公告)号:US20110064302A1

    公开(公告)日:2011-03-17

    申请号:US12865639

    申请日:2009-01-29

    IPC分类号: G06K9/62 G10L15/08 G06N5/02

    摘要: A method is disclosed for recognition of high-dimensional data in the presence of occlusion, including: receiving a target data that includes an occlusion and is of an unknown class, wherein the target data includes a known object; sampling a plurality of training data files comprising a plurality of distinct classes of the same object as that of the target data; and identifying the class of the target data through linear superposition of the sampled training data files using l1 minimization, wherein a linear superposition with a sparsest number of coefficients is used to identify the class of the target data.

    摘要翻译: 公开了一种用于在存在遮挡的情况下识别高维数据的方法,包括:接收包括闭塞并且是未知类的目标数据,其中所述目标数据包括已知对象; 对包含与所述目标数据相同的对象的多个不同类别的多个训练数据文件进行采样; 以及使用l1最小化通过采样的训练数据文件的线性叠加来识别目标数据的类别,其中使用具有最少数量的系数的线性叠加来标识目标数据的类别。

    Recognition via high-dimensional data classification
    2.
    发明授权
    Recognition via high-dimensional data classification 有权
    通过高维数据分类识别

    公开(公告)号:US08406525B2

    公开(公告)日:2013-03-26

    申请号:US12865639

    申请日:2009-01-29

    IPC分类号: G06K9/66

    摘要: A method is disclosed for recognition of high-dimensional data in the presence of occlusion, including: receiving a target data that includes an occlusion and is of an unknown class, wherein the target data includes a known object; sampling a plurality of training data files comprising a plurality of distinct classes of the same object as that of the target data; and identifying the class of the target data through linear superposition of the sampled training data files using l1 minimization, wherein a linear superposition with a sparsest number of coefficients is used to identify the class of the target data.

    摘要翻译: 公开了一种用于在存在遮挡的情况下识别高维数据的方法,包括:接收包括闭塞并且是未知类的目标数据,其中所述目标数据包括已知对象; 对包含与所述目标数据相同的对象的多个不同类别的多个训练数据文件进行采样; 以及使用l1最小化通过采样的训练数据文件的线性叠加来识别目标数据的类别,其中使用具有最少数量的系数的线性叠加来标识目标数据的类别。