摘要:
A method of manufacturing a titanium alloy with high strength and high formability includes preparing a material and equipment for manufacturing a titanium alloy, manufacturing a titanium alloy having a lamellar structure (martensite structure) by cooling the prepared material with water after performing heat treatment at the beta transformation temperature or more, and rolling that makes ultrafine grains by finishing forming of the titanium alloy at a plastic instability temperature by gradually decreasing the forming temperature in accordance with an increase of a strain after starting the forming at the plastic instability temperature of more, under a condition of a low strain in which the strain is 2.5 or less, after the manufacturing of a titanium alloy having a lamellar structure.
摘要:
A lamellar titanium-aluminium (TiAl) alloy having a beta-gamma phase according to the present invention contains aluminum (Al) of 40˜46 at %, niobium (Nb) of 3˜6 at %, a creep resistance enhancer of 0.2˜0.4 at %, a softening resistance enhancer of 2 at %, and the balance of titanium (Ti) and is manufactured by vacuum arc melting.
摘要:
A method of manufacturing a titanium alloy with high strength and high formability, the method including preparing a titanium alloy material and equipment for manufacturing the titanium alloy, manufacturing the titanium alloy having a lamellar structure (martensite structure) by cooling the prepared titanium alloy material with water after performing heat treatment at the beta transformation temperature or more, and rolling that makes ultrafine grains by finishing forming of the titanium alloy at a plastic instability temperature or less of an initial lamellar structure by gradually decreasing the forming temperature in accordance with an increase of a strain after starting the forming at the plastic instability temperature or more of an initial lamellar structure, under a condition of a low strain in which the strain is 2.5 or less, after the manufacturing of a titanium alloy having a lamellar structure.
摘要:
In a Ti—Ni alloy thin film, Ti and Ni are mixed and deposited on a base material by putting a Ti target and an Ni target at a predetermined distance from each other in a co-sputtering apparatus and simultaneously sputtering the targets by applying different voltages. A method of fabricating a Ti—Ni alloy thin film using co-sputtering includes a target preparing step that prepares a Ti target, a Ni target and a base material, a target disposing step that puts the Ti target and the Ni target at a predetermined distance from each other in a co-sputtering apparatus, an apparatus setting step that sets work conditions of the co-sputtering apparatus, and a thin film depositing step that forms a Ti—Ni alloy thin film with Ti and Ni mixed on the base material by operating the co-sputtering apparatus.