摘要:
A method of constructing a database in a mobile communication terminal includes analyzing one of a file attribute and a database field type of the received file when the file is received, determining whether the analyzed one of the file attribute and the database field type is identical to a field type of the database in the mobile communication terminal, and updating a database table in the mobile communication terminal according to the determination.
摘要:
An asynchronous transfer mode adaptation layer (AAL) processing apparatus using a central processing unit in an asynchronous transfer mode (ATM) terminal includes: a physical layer for performing physical functions and supporting universal test and operations physical interface for ATM (UTOPIA); a software segmentation and reassembly interface device (SSID) for storing ATM cells outputted by the physical layer in a double port RAM under the control of a central processing unit and outputting to the physical layer the ATM cells, which have been stored in the double port RAM by the central processing unit, under the control of the central processing unit; a double port RAM for storing the ATM cells depending upon the control of the central processing unit or the SSID; a system memory for temporarily storing the ATM cells of the central processing unit; and a central processing unit, for storing in the double port RAM the user data, produced by reassembly of the ATM cells stored in the double port RAM, for storing in the double port RAM the ATM cells produced by segmentation of the user data stored in the double port RAM, and for controlling the overall system.
摘要:
The present invention relates to an apparatus for processing an ultrasound image of a target object including a periodically moving object, including: an ROI setting unit for setting regions of interest (ROIs) to each of frames constituting ultrasound volume data acquired from a target object; a VOI setting unit for selecting a predetermined number of first reference frames from the ultrasound volume data and setting a predetermined number of volumes of interest (VOIs) by combining ROIs of the first reference frames with ROIs of frames adjacent to the reference frames; a motion compensating unit for processing the VOIs to compensate a motion of the target object; a correlation coefficient curve calculating unit for calculating a correlation coefficient curve for a predetermined interval at each VOI; a period setting unit for setting a moving period of the moving object based on the correlation coefficient curve in the volume data; and an ultrasound volume data reconstructing unit for reconstructing the ultrasound volume data based on the moving period.
摘要:
A method of constructing a database in a mobile communication terminal includes analyzing one of a file attribute and a database field type of the received file when the file is received, determining whether the analyzed one of the file attribute and the database field type is identical to a field type of the database in the mobile communication terminal, and updating a database table in the mobile communication terminal according to the determination.
摘要:
An image enhancement method and system are provided. The image enhancement method and system are capable of improving image quality by performing gamma corrections on global and local illuminations and reflectance estimated from an input image, in consideration of dynamic range and contrast of the image, respectively. Particularly, in a case of a color image, the red, green, and blue (RGB) component images are converted into hue, saturation, and value (HSV) component images, and the global and local illuminations and reflectance estimated from the V component image. By converting the hue (H), saturation (S), and enhanced value (V) into RGB, an enhanced color image can be obtained.
摘要:
An image enhancement method and system are provided. The image enhancement method and system are capable of improving image quality by performing gamma corrections on global and local illuminations and reflectance estimated from an input image, in consideration of dynamic range and contrast of the image, respectively. Particularly, in a case of a color image, the red, green, and blue (RGB) component images are converted into hue, saturation, and value (HSV) component images, and the global and local illuminations and reflectance estimated from the V component image. By converting the hue (H), saturation (S), and enhanced value (V) into RGB, an enhanced color image can be obtained.