Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms
    1.
    再颁专利
    Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms 有权
    使用多个并行假设相关算法来检测和识别稳定的PRI模式

    公开(公告)号:USRE44269E1

    公开(公告)日:2013-06-04

    申请号:US13364560

    申请日:2012-02-02

    Inventor: Joseph A. Sirois

    CPC classification number: G06F17/15 G01S7/021

    Abstract: A linear detection method for determining correlation values associated with an estimated Pulse Repetition Interval (PRI) executed by a linear detection module of a correlation mask disposed on a digital signal processor is provided comprising: determining a correlation spread associated with a vector of Times-of-Arrival (TOA) data; determining a delta spread associated with the correlation spread; determining a first/next estimated PRI associated with the vector of TOA data; determining a first/next estimated PRI vector based on the first/next estimated PRI; determining a delta vector based on the first/next estimated PRI vector; determining a correlation weights vector based on the delta vector; determining a first/next correlation value based on the correlation weights vector; and in response to there being no additional PRIs to estimate, searching the correlation values for a highest correlation.

    Abstract translation: 一种线性检测方法,用于确定由布置在数字信号处理器上的相关掩模的线性检测模块执行的与估计的脉冲重复间隔(PRI)相关联的相关值的线性检测方法,包括:确定与时间 - - 对数(TOA)数据; 确定与相关扩展相关联的delta扩展; 确定与TOA数据的向量相关联的第一/下一估计PRI; 基于所述第一/第二估计PRI确定第一/下一估计PRI向量; 基于所述第一/下一估计的PRI向量确定Δ向量; 基于Δ向量确定相关权重向量; 基于相关权重向量确定第一/下一个相关值; 并且响应于没有额外的PRI来估计,搜索相关值以获得最高的相关性。

    Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms
    2.
    发明授权
    Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms 有权
    使用多个并行假设相关算法来检测和识别稳定的PRI模式

    公开(公告)号:US07657588B2

    公开(公告)日:2010-02-02

    申请号:US11458963

    申请日:2006-07-20

    Inventor: Joseph A Sirois

    CPC classification number: G06F17/15 G01S7/021

    Abstract: A linear detection method for determining correlation values associated with an estimated Pulse Repetition Interval (PRI) executed by a linear detection module of a correlation mask disposed on a digital signal processor is provided comprising: determining a correlation spread associated with a vector of Times-of-Arrival (TOA) data; determining a delta spread associated with the correlation spread; determining a first/next estimated PRI associated with the vector of TOA data; determining a first/next estimated PRI vector based on the first/next estimated PRI; determining a delta vector based on the first/next estimated PRI vector; determining a correlation weights vector based on the delta vector; determining a first/next correlation value based on the correlation weights vector; and in response to there being no additional PRIs to estimate, searching the correlation values for a highest correlation.

    Abstract translation: 一种线性检测方法,用于确定由布置在数字信号处理器上的相关掩模的线性检测模块执行的与估计的脉冲重复间隔(PRI)相关联的相关值的线性检测方法,包括:确定与时间 - - 对数(TOA)数据; 确定与相关扩展相关联的delta扩展; 确定与TOA数据的向量相关联的第一/下一估计PRI; 基于所述第一/第二估计PRI确定第一/下一估计PRI向量; 基于所述第一/下一估计的PRI向量确定Δ向量; 基于Δ向量确定相关权重向量; 基于相关权重向量确定第一/下一个相关值; 并且响应于没有额外的PRI来估计,搜索相关值以获得最高的相关性。

    Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms
    3.
    发明授权
    Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms 有权
    使用多个并行假设相关算法来检测和识别稳定的PRI模式

    公开(公告)号:US07133887B2

    公开(公告)日:2006-11-07

    申请号:US10637386

    申请日:2003-08-08

    Inventor: Joseph A Sirois

    CPC classification number: G06F17/15 G01S7/021

    Abstract: An algorithmic approaches that can be implemented in software/firmware/hardware that filters out stable PRI patterns detected within a system that is prosecuting against radar based transmissions are disclosed. The algorithms allow downstream computing assets to concentrate their limited resources on the more complex emitter PRI pattern types. Thus, a portion (e.g., stable signals) of the pulse deinterleave and PRI identification problem is solved without requiring the more computationally expensive processing. The disclosed algorithms can be employed, for example, in electronic support measures (ESM) systems, electronic intelligence (ELINT) systems, and/or a electronic countermeasures (ECM) systems. The algorithms employ linear detection, linear regression, or a combination of linear detection and linear regression, thereby providing a “dual voting” scheme that decreases the occurrence of false positives. Other algorithmic approaches can be used as well in a multi-voting scheme that considers PRI estimates from distinct analysis types.

    Abstract translation: 公开了可以在软件/固件/硬件中实现的算法方法,该软件/固件/硬件过滤掉在基于雷达的传输的系统内检测到的稳定的PRI模式。 这些算法允许下游计算资产将其有限资源集中在更复杂的发射器PRI模式类型上。 因此,解决了脉冲解交织和PRI识别问题的一部分(例如,稳定的信号),而不需要更多的计算上昂贵的处理。 所公开的算法可以用于例如电子支持措施(ESM)系统,电子智能(ELINT)系统和/或电子对抗(ECM)系统中。 算法采用线性检测,线性回归或线性检测和线性回归的组合,从而提供减少假阳性发生的“双投票”方案。 其他算法方法也可以用于考虑不同分析类型的PRI估计的多投票方案。

Patent Agency Ranking