Abstract:
There is provided herein a system and method of seismic data collection for land and marine data that utilizes narrowband to monochromatic low-frequency non-impulsive sources designed to optimize the ability of migration/inversion algorithms to image the subsurface of the Earth, in particular, full-waveform inversion.
Abstract:
There is provided a method of seismic acquisition that utilizes a bank of restricted-bandwidth swept-frequency sub-band sources as a seismic source. Each seismic source will cover a restricted sub-band of frequencies, with all the sources taken together covering the full frequency range. Adjacent frequency bands may partially overlap, but non-adjacent frequency bands should not. The sources may be divided into two or more groups, with no sources covering adjacent frequency bands being placed in the same group. The sources within a group can then be separated by bandpass filtering or by conventional simultaneous source-separation techniques. The source groups may be operated simultaneously but separated in space, and the individual sources themselves may each operate independently, on a sweep schedule customized for that particular source.
Abstract:
There is provided herein a system and method of acquiring, processing, and imaging transient Controlled Source ElectroMagnetic (t-CSEM) data in ways that are similar to those used for seismic data. In particular, the instant invention exploits the time-distance characteristics of t-CSEM data to permit the design and execution of t-CSEM surveys for optimal subsequent processing and imaging. The instant invention illustrates how to correct t-CSEM data traces for attenuation and dispersion, so that their characteristics are more like those of seismic data and can be processed using algorithms familiar to the seismic processor. The resulting t-CSEM images, particularly if combined with corresponding seismic images, may be used to infer the location of hydrocarbon reservoirs.
Abstract:
A method and apparatus for high-resolution measurement of seismic anisotropy, comprising: a recording system, a borehole having an axis that is deviated from the vertical by a known acute angle; a housing that is adapted to travel within the borehole and that is in electronic communication to the recording system, the housing carrying at least one source of acoustic energy and at least two receivers for receiving acoustic energy from geological formation elements and/or lithologic horizons and from the source; and processing means for operating the source and the receivers, for recording the position of the housing in the borehole and for processing data from said recording system in terms of both the direct raypaths from the source to the receivers and the indirect raypaths from the source through geological formation elements and/or lithologic horizons to the receivers to obtain measures of at least the seismic polar anisotropy parameters V0, η, and δ.
Abstract:
There is provided herein a system and method of seismic data collection for land and marine data that utilizes narrowband to monochromatic low-frequency non-impulsive sources designed to optimize the ability of migration/inversion algorithms to image the subsurface of the Earth, in particular, full-waveform inversion.
Abstract:
There is provided herein a system and method of seismic data collection for land and marine data that utilizes narrowband to monochromatic low-frequency non-impulsive sources designed to optimize the ability of migration/inversion algorithms to image the subsurface of the Earth, in particular, full-waveform inversion.
Abstract:
There is provided herein a system and method of seismic data collection for land and marine data that utilizes narrowband to monochromatic low-frequency non-impulsive sources designed to optimize the ability of migration/inversion algorithms to image the subsurface of the Earth, in particular, full-waveform inversion.
Abstract:
A marine seismic source comprises a housing having a central axis, an open end, and a closed end opposite the open end. In addition, the seismic source includes a piston extending coaxially through the open end of the housing. The piston is adapted to axially reciprocate relative to the housing. Further, the piston has a first end distal the housing and a second end disposed within the housing.
Abstract:
A marine seismic source comprises a housing having a central axis, an open end, and a closed end opposite the open end. In addition, the seismic source includes a piston extending coaxially through the open end of the housing. The piston is adapted to axially reciprocate relative to the housing. Further, the piston has a first end distal the housing and a second end disposed within the housing.
Abstract:
There is provided herein a system and method of acquiring, processing, and imaging transient Controlled Source ElectroMagnetic (t-CSEM) data in ways that are similar to those used for seismic data. In particular, the instant invention exploits the time-distance characteristics of t-CSEM data to permit the design and execution of t-CSEM surveys for optimal subsequent processing and imaging. The instant invention illustrates how to correct t-CSEM data traces for attenuation and dispersion, so that their characteristics are more like those of seismic data and can be processed using algorithms familiar to the seismic processor. The resulting t-CSEM images, particularly if combined with corresponding seismic images, may be used to infer the location of hydrocarbon reservoirs.