摘要:
Provided are an apparatus and method for selecting an optimal signal using auxiliary equalization in a diversity receiver. The optimal signal selecting apparatus includes: a plurality of sync recovery units for extracting sync information from baseband signals, which are candidate signals, except a baseband signal selected as a current optimal signal a plurality of auxiliary equalizers for channel-equalizing the candidate signals based on the extracted sync information; a plurality of SNR measuring units for measuring signal-to-noise ratios (SNRs) of the candidate signals inputted to the auxiliary equalizers and the candidates signals equalized in the auxiliary equalizers; and an optimal signal selector for selecting an optimal candidate signal from the candidate signals by using the extracted sync information and the measured SNRs, and replacing the optimal signal with the optimal candidate signal when reception quality of the current optimal signal is poor.
摘要:
Provided are an apparatus and method for selecting an optimal signal using auxiliary equalization in a diversity receiver. The optimal signal selecting apparatus includes: a plurality of sync recovery units for extracting sync information from baseband signals, which are candidate signals, except a baseband signal selected as a current optimal signal a plurality of auxiliary equalizers for channel-equalizing the candidate signals based on the extracted sync information; a plurality of SNR measuring units for measuring signal-to-noise ratios (SNRs) of the candidate signals inputted to the auxiliary equalizers and the candidates signals equalized in the auxiliary equalizers; and an optimal signal selector for selecting an optimal candidate signal from the candidate signals by using the extracted sync information and the measured SNRs, and replacing the optimal signal with the optimal candidate signal when reception quality of the current optimal signal is poor.
摘要:
Method and apparatus for managing channels for a plurality of digital broadcasting methods. The method of managing channels comprises: detecting broadcasting channels which correspond to at least one broadcasting method predetermined from a plurality of digital broadcasting methods with respect to each physical channel in a predetermined reception range; and storing channel information of the detected broadcasting channels in a memory. Accordingly, an efficient and convenient method of managing channels is provided in a plurality of digital broadcasting standards.
摘要:
An equalizer and an equalization method usable in a high definition television (HDTV) are provided. The equalizer may receive an input signal including a data signal and a training sequence and may compensate for distortion of the input signal in a high definition television. The equalizer may include an input signal reuse unit, a filter unit, and an error calculation unit. The error calculation unit may receive an equalizer output signal, may estimate the equalizer output signal at an estimate value, may generate the estimate value as a decision value, and may output a difference between the equalizer output signal and the decision value as the error signal.
摘要:
Provided are a beam combining and hybrid beam selection method that can improve digital broadcasting reception performance by combining more than two beam output signals (beam combination type) instead of simply selecting one of beam output signals (beam selection type), or even selecting an optimal method between the beam selection type and the beam combination type, and a digital broadcasting receiving apparatus using the same.
摘要:
There are provided a method for selecting an optimal beam to improve digital broadcasting receiving performance, and a digital broadcasting receiving apparatus using the same. The method includes the steps of: a) calculating a mainpath Signal to Multipath signal and Noise Ratio (SMNR) based on a channel impulse response for a plurality of beams which are formed according to steering directions from output signals of antennas, wherein the output signal of each antenna has different phase shift according to location of antenna element; b) selecting a predetermined number of beams having a high SMNR value by comparing the calculated SMNR value for respective beam; c) calculating a mainpath Signal to Dominant Multipath signal Ratio (SDMR) based on a channel impulse response corresponding to the selected beam; and d) selecting a beam output signal having the biggest SDMR value by comparing SDMR values calculated in selecting a predetermined number of beams.
摘要:
There are provided a method for selecting an optimal beam to improve digital broadcasting receiving performance, and a digital broadcasting receiving apparatus using the same. The method includes the steps of: a) calculating a mainpath Signal to Multipath signal and Noise Ratio (SMNR) based on a channel impulse response for a plurality of beams which are formed according to steering directions from output signals of antennas, wherein the output signal of each antenna has different phase shift according to location of antenna element; b) selecting a predetermined number of beams having a high SMNR value by comparing the calculated SMNR value for respective beam; c) calculating a mainpath Signal to Dominant Multipath signal Ratio (SDMR) based on a channel impulse response corresponding to the selected beam; and d) selecting a beam output signal having the biggest SDMR value by comparing SDMR values calculated in selecting a predetermined number of beams.
摘要:
Provided are a beam combining and hybrid beam selection method that can improve digital broadcasting reception performance by combining more than two beam output signals (beam combination type) instead of simply selecting one of beam output signals (beam selection type), or even selecting an optimal method between the beam selection type and the beam combination type, and a digital broadcasting receiving apparatus using the same. The beam selecting method includes: a) calculating SMNRs (mainpath signal to multipath signal and noise ratios) with respect to a plurality of beam output signals, formed according to directions from a plurality of antenna output signals whose phases are shifted depending on arrangement positions of array antennas, by using corresponding channel impulse responses; b) selecting a first predetermined number of beam output signals according to magnitudes of the SMNRs by comparing the calculated SMNRs with respect to the respective beam output signals; c) calculating a delay time between mainpath signals of the selected beam output signals, and generating a combined beam output signal by combining the two beam output signals by adjusting the calculated delay time; d) when the SMNR of the combined beam output signal is less than the maximal SMNR of the selected beam output signals, calculating an SDMR (mainpath signal to dominant multipath signal ratio) with respect to the respective beam output signals, and selecting a beam output signal having the greatest SDMR; and e) calculating an SMNR of the combined beam output signal using channel impulse response of the combined beam output signal, and comparing the calculated SMNR with a maximal value among the SMNRs of the selected beam output signals; and f) when the SMNR of the combined beam output signal is greater than or equal to the maximal SMNR of the selected output signals, selecting the combined beam output signal generated in step c).