Abstract:
An image forming apparatus includes image bearers, developing devices, developer containers, and developer supply devices. The image bearers are arranged side by side along a movement direction of an intermediate transferor or a sheet. The developing devices, the developer containers, and the developer supply devices are configured to be rearrangeable for each color in the movement direction in a manner that one or each of a developing device, a developer container, and a developer supply device corresponding to each color of the different colors is detached from and attached to the image forming apparatus, separately from a rest of the developing device, the developer container, and the developer supply device. The image forming apparatus is configured to be available for use when colors of the developing device, the developer container, and the developer supply device correspond to each other after rearrangement.
Abstract:
A powder container is for use with an image forming apparatus, and the image forming apparatus includes a driving protrusion that is rotatable and that protrudes toward an upstream side in an insertion direction in which the powder container is inserted. The powder container includes a container body to store powder, a cap attached to the container body, and a transmitted structure provided on the cap to contact the driving protrusion. The transmitted structure extends outward from an outer circumference of the powder container. The cap is rotatable relative to the container body in a predetermined angular range. The rotation of the cap relative to the container body is restricted so that the container body rotates along with the rotation of the cap when the rotation of the cap exceeds the predetermined angular range.
Abstract:
A powder container is insertable in an image forming apparatus. The powder container includes a plurality of transmitted surfaces, at least one of the transmitted surfaces being configured to contact a first protrusion of the linage forming apparatus, the first protrusion being rotatable and protruding toward an upstream side in an insertion direction in which the powder container is inserted. The transmitted surfaces stand outward from an outer circumference of the powder container so that one of the transmitted surfaces is connected to another transmitted surface adjacent to the one of the transmitted surfaces by an inclined surface.
Abstract:
A developing device includes a developer bearer to carry, by rotation, developer including toner and magnetic carrier to a developing range facing a latent image bearer; a casing including a developer container and an opening to expose a part of the developer bearer disposed in the casing; an opposing face of the casing including a conductive material and opposing to a surface of the developer bearer downstream from the developing range in a direction of rotation of the developer bearer; a developing bias source to apply a developing bias to the developer bearer; and an insulation layer disposed on the opposing face of the casing. The opposing face is disposed across, from the developer bearer, a casing gap sized to allow the developer borne on the developer bearer to contact the opposing face.
Abstract:
An image forming apparatus includes a developing device; a developer conveyance device including a developer container, a developer reservoir to receive developer discharged from the developer container, and a positive-displacement pump to discharge, from the developer reservoir, developer supplied to the developing device by alternately generating positive pressure and negative pressure due to volume changes; and a controller to control driving of the positive-displacement pump. When the controller recognizes a developer end state of the developer container, the controller lowers a developer conveyance capability of the positive-displacement pump from a setting used before the developer end state is recognized.
Abstract:
A developing device includes a developer bearer opposed to an image bearer, configured to bear developer and rotate in a direction of rotation of the developer bearer, and configured to develop a latent image on the image bearer and a casing opposed to the developer bearer at a position downstream from an opposed position, at which the developer bearer is opposed to the image bearer, in the direction of rotation of the developer bearer. A casing gap between the developer bearer and the casing continuously decreases or increases from a first end of the developing device to a second end of the developing device across a center of the developing device in a longitudinal direction of the developing device.
Abstract:
A powder container is insertable in an image forming apparatus. The powder container includes a plurality of transmitted surfaces, at least one of the transmitted surfaces being configured to contact a first protrusion of the image forming, apparatus, the first protrusion being rotatable and protruding toward an upstream side in an insertion direction in which the powder container is inserted. The transmitted surfaces stand outward from an outer circumference of the powder container so that one of the transmitted surfaces is connected to another transmitted surface adjacent to the one of the transmitted surfaces by an inclined surface.
Abstract:
An image forming apparatus includes an intermediate transferor, a plurality of image bearers, a plurality of developing devices, a plurality of developer containers, a plurality of conveyance paths, and a plurality of sub-hoppers. At least one set of an image bearer, a developing device, and a sub-hopper is disposed at a height different from other sets. The arrangement of the plurality of developing devices and the plurality of sub-hoppers in the rotation direction of the intermediate transferor is changed while satisfying the following. The arrangement of the plurality of developer containers is not changed and the connections between the plurality of developing devices and the plurality of sub-hoppers are not change, while the layout of the plurality of tubes as the plurality of conveyance paths is changed so that the connections between the plurality of tubes and the plurality of sub-hoppers are not changed.
Abstract:
A powder container is for use with an image forming apparatus, and the image forming apparatus includes a driving protrusion that is rotatable and that protrudes toward an upstream side in an insertion direction in which the powder container is inserted. The powder container includes a container body to store powder, a cap attached to the container body, and a transmitted structure provided on the cap to contact the driving protrusion. The transmitted structure extends outward from an outer circumference of the powder container. The cap is rotatable relative to the container body in a predetermined angular range. The rotation of the cap relative to the container body is restricted so that the container body rotates along with the rotation of the cap when the rotation of the cap exceeds the predetermined angular range.
Abstract:
A developing device, including: a developer containing toner and carrier; and developer bearer configured to have surface thereof bear the developer and endlessly move, and to develop latent image over surface of latent image bearer by supplying toner in developer to latent image in developing region facing the latent image bearer, wherein carrier contains fine particles, value X in volume resistivity R (=10X) (Ω·cm) of carrier is 11.5-16.0, developer bearer includes: magnetic field generating unit including a plurality of magnetic poles; and developing sleeve having a cylindrical shape enclosing magnetic field generating unit, and configured to bear developer over outer circumferential surface of cylindrical shape by magnetic force of the magnetic field generating unit and perform surface moving by rotating relative to developing device body, and developing device includes developing sleeve voltage applying unit configured to apply AC component-containing voltage to developing sleeve.