摘要:
In an image forming optical system having a positive lens group, a negative lens group, and an aperture stop, the positive lens group being disposed at an image-plane side of the aperture stop and having a cemented lens, and when a straight line indicated by Nd=α×νd+β (where, α=−0.017) is set, Nd and νd of at least one lens forming the cemented lens are included in both an area which is determined by a line when a lower limit value is in a range of a following conditional expression (1), and a line when an upper limit value is in a range of the following conditional expression (1), and in an area determined by following conditional expressions (2) and (3) 1.45
摘要:
The first lens group comprises a positive lens and a negative lens, and the total number of lenses in the first lens group is 2. The second lens group consists of, in order from the object side, a front unit of negative refracting power and a rear unit of positive refracting power. The third lens group consists of, in order from the object side, a front unit of positive refracting power and a rear unit of negative refracting power. The fourth lens group comprises a positive lens component, and the total number of lens components in the fourth lens group is 1. The front unit of the second lens group comprises a negative lens component, and the total number of lens components in the front unit of the second lens group is 1. The rear unit of the second lens group comprises, in order from the object side to the image side, a negative lens and a positive lens, and the total number of lenses in the rear unit of the second lens group is 2. The negative lens component in the front unit of the second lens group and the negative lens in the rear unit of the second lens group satisfy the following condition (1A): 2.9
摘要:
A zoom optical system has, in order from the object side, a first lens unit with negative refracting power, including one biconcave-shaped lens component, a second lens unit with positive refracting power, a third lens unit with negative refracting power, and a fourth lens unit with positive refracting power. When the magnification of the zoom optical system is changed, relative distances between individual lens units are varied and the zoom optical system satisfies the following condition: 0.2≦dCD/fw≦1.2 where dCD is spacing between the third lens unit and the fourth lens unit on the optical axis in infinite focusing at a wide-angle position and fw is the focal length of the entire system of the zoom optical system at the wide-angle position.
摘要:
A compound lens on which a plastic lens is formed on a glass lens, having: an annular step part which is formed on the end part of the optical functional surface, on which the plastic lens is formed, on the outer circumference side on the outside of the outermost diameter of the optical functional surface and which is formed for directly mounting on a resin-made lens tube frame; and a caulk-fix part, being formed, in a form of a chamfer, in the outer form part of the glass lens on the optical functional surface on the opposite side of the optical functional surface on which the plastic lens is formed, wherein an influence of a heat on the plastic lens is eliminated when fixing the glass lens onto the resin-made lens tube frame by means of thermal caulking.
摘要:
The invention relates to a zoom lens and an imaging apparatus incorporating the same. More particularly, the invention is concerned with a zoom lens that is downsized for use with imaging apparatus inclusive of video cameras and digital cameras. The zoom lens comprises a positive first group G1, a negative lens group G2, a positive third group G3, a positive fourth group G4 and an aperture stop S. At least the first group G1 and the second group G2 move for zooming from the wide-angle end to the telephoto end. The first group G1, the third group G3 and the aperture stop S are positioned more on the object side in a state of the telephoto end than in a state of the wide-angle end. The spacing sandwiched between the first group G1 and the second group G2 grows wide, the spacing sandwiched between the second group G2 and the third group G3 becomes narrows, and the spacing sandwiched between the third group G3 and the fourth lens group G4 grows wide. The first group G1 comprises one positive lens and one negative lens, the second group G2 comprises one positive lens and two negative lenses, the third group G3 comprises, in order from the object side, a double-convex positive lens convex on both object- and image-side surfaces and a negative meniscus lens convex on the object-side surface and concave on the image-side surface, and the fourth group G4 comprises on positive lens.
摘要:
The zoom lens of the invention comprises, in order from an object side thereof, a first lens group having positive refracting power, a second lens group having negative refracting power, a third lens group having positive refracting power, a fourth lens group having positive refracting power, a fifth lens group having negative refracting power, and a sixth lens group having positive refracting power. The first lens group includes a reflective optical element, and the lens component in, and on the most image side of, the fourth lens group has negative refracting power.
摘要:
A zoom optical system having a lens group I including two single lenses or one lens component, an aperture stop, and a lens group A disposed between the lens group I and the aperture stop, including a lens component made up of a positive lens LA and a negative lens LB that are cemented together, and having a negative refracting power as a whole. The distance between the lens group I and the lens group A on the optical axis changes for zooming, and the lens component has an aspheric cemented surface. When the shape of the aspheric surface is expressed by a certain equation, the shape of the air-contact surface of the positive lens LA and its aspheric components etc. satisfy conditional expressions (3a) and (3b).
摘要:
A zoom lens includes, in order from the object side, a negative lens unit, a positive lens unit and a positive lens unit. During zooming from the object side, the second lens unit moves, the distance between the first lens unit and the second lens unit decreases, the distance between the second lens unit and the third lens unit increases. The second lens unit has two lens components including, in order from the object side, a positive front lens component and a rear lens component. The third lens unit is composes of two lens components including, in order from the object side, a front lens component and a positive rear lens component. An aperture stop is disposed closer to the image side than the first lens unit and closer to the object side than the rear lens component in the second lens unit, and the aperture stop moves integrally with the second lens unit along the optical axis direction during zooming from the wide angle end to the telephoto end.
摘要:
An optical system includes, in order from its object side a negative first lens unit, a positive second lens unit, a negative third lens unit, and a positive fourth lens unit. The air gaps between the lens units are variable during zooming. The first lens unit includes one positive lens, the second lens unit includes one negative lens, the third lens unit consists of one or two lens components, and the fourth lens unit consists of one lens component, where the term “lens component” refers to a single lens or a cemented lens. The system satisfies the condition “0
摘要:
An image forming optical system according to the present invention is characterized in that, in an image forming optical system having a positive lens group, a negative lens group, and an aperture stop, the positive lens group is disposed at an object side of the aperture stop, the positive lens group has a cemented lens which is formed by cementing a plurality of lenses, in a rectangular coordinate system in which a horizontal axis is let to be Nd and a vertical axis is let to be νd, when a straight line indicated by Nd=α×νd+β (where, α=−0.017) is set, Nd and νd of at least one lens forming the cemented lens is included in both of areas namely, an area which is determined by a line when a lower limit value is in a range of a following conditional expression (1a), and a line when an upper limit value is in a range of the following conditional expression (1a), and of an area determined by following conditional expressions (2a) and (3a). 1.45