Abstract:
A network device may receive an activation instruction. The network device may provide network resources. The activation instruction may request the network device to activate a particular network resource that is deactivated. The activation instruction may be associated with a license that identifies the particular network resource and identifies a resource request of a user. The network device may configure, based on the activation instruction, a component of the network device to activate the particular network resource. The component, after being configured to activate the particular network resource, may allow data flows, received by the network device, to be provided towards a destination device using the particular network resource. The network device may receive a data flow and provide, by the component of the network device, the data flow towards the destination device using the particular network resource.
Abstract:
Consistent with the present disclosure, client data, which may include multiplexed data sub-streams, is supplied to an ingress node of a network. Each sub-stream typically has a corresponding data rate, i.e., an original data rate, prior to multiplexing. The client data is encapsulated in a plurality of successive frames that are output from the ingress node and propagate, typically through one or more intermediate nodes, to an egress node. At the egress node, data rates associated with the sub-streams included in each frame are determined based on the amount of client data in each frame. The data rates are then averaged over a given number of frames to thereby filter any wander or deviation in the client data rate. Based on the averaged data rate, justification opportunities are added to the client data in each sub-stream, which are then multiplexed into frames that are output from the egress node. By including the justification opportunities, the effective rate of each sub-stream may be set equal to the original data rate when the sub-streams are demultiplexed after being output from the egress node. An advantage of the present disclosure is that the justification opportunities, are not generated based solely on clock signals generated by PLL circuits. As a result, fewer PLL circuits are required, thereby simplifying system design and minimizing power consumption.
Abstract:
A network device may receive an activation instruction. The network device may provide network resources. The activation instruction may request the network device to activate a particular network resource that is deactivated. The activation instruction may be associated with a license that identifies the particular network resource and identifies a resource request of a user. The network device may configure, based on the activation instruction, a component of the network device to activate the particular network resource. The component, after being configured to activate the particular network resource, may allow data flows, received by the network device, to be provided towards a destination device using the particular network resource. The network device may receive a data flow and provide, by the component of the network device, the data flow towards the destination device using the particular network resource.
Abstract:
Consistent with the present disclosure, a transmitter is provided that includes first and second stages of wavelength locking circuitry. The first stage includes a tunable optical filter that sweeps through the spectrum of a WDM signal at a predetermined rate. A first photodiode senses a tapped portion of the output of the tunable filter. The remaining light is fed to the second stage, which includes a second optical filter, typically having a fixed transmission characteristic. A second photodiode senses the light that passes through the second filter. By sweeping the WDM spectrum the tunable filter can be used to identify the peaks in the WDM spectrum, with each peak corresponding to an optical signal wavelength and occurring at a particular time interval during the sweep. Thus, each optical signal wavelength can be associated with a particular time interval in the sweep, and, if no peak is identified during the sweep, a fault can be identified as either a laser failure or that the optical signal wavelength has drifted or “hopped” to another optical signal wavelength. Once having identified that an optical signal has hopped, the optical source outputting that optical signal can be appropriately controlled to output light at the correct wavelength.
Abstract:
Consistent with the present disclosure, client data, which may include multiplexed data sub-streams, is supplied to an ingress node of a network. Each sub-stream typically has a corresponding data rate, i.e., an original data rate, prior to multiplexing. The client data is encapsulated in a plurality of successive frames that are output from the ingress node and propagate, typically through one or more intermediate nodes, to an egress node. At the egress node, data rates associated with the sub-streams included in each frame are determined based on the amount of client data in each frame. The data rates are then averaged over a given number of frames to thereby filter any wander or deviation in the client data rate. Based on the averaged data rate, justification opportunities are added to the client data in each sub-stream, which are then multiplexed into frames that are output from the egress node. By including the justification opportunities, the effective rate of each sub-stream may be set equal to the original data rate when the sub-streams are demultiplexed after being output from the egress node. An advantage of the present disclosure is that the justification opportunities, are not generated based solely on clock signals generated by PLL circuits. As a result, fewer PLL circuits are required, thereby simplifying system design and minimizing power consumption.
Abstract:
Consistent with the present disclosure, a transmitter is provided that includes first and second stages of wavelength locking circuitry. The first stage includes a tunable optical filter that sweeps through the spectrum of a WDM signal at a predetermined rate. A first photodiode senses a tapped portion of the output of the tunable filter. The remaining light is fed to the second stage, which includes a second optical filter, typically having a fixed transmission characteristic. A second photodiode senses the light that passes through the second filter. By sweeping the WDM spectrum the tunable filter can be used to identify the peaks in the WDM spectrum, with each peak corresponding to an optical signal wavelength and occurring at a particular time interval during the sweep. Thus, each optical signal wavelength can be associated with a particular time interval in the sweep, and, if no peak is identified during the sweep, a fault can be identified as either a laser failure or that the optical signal wavelength has drifted or “hopped” to another optical signal wavelength. Once having identified that an optical signal has hopped, the optical source outputting that optical signal can be appropriately controlled to output light at the correct wavelength.