Abstract:
A method performs ultrasound testing of a test body having a hole extending in an axial direction. The method include disposing a test head within the hole. The test head extends in the axial direction and has sensor rings which are at a distance from one another and are disposed one behind the other in the axial direction. The sensor rings have a plurality of ultrasound transducers which are at a distance from one another. The ultrasound transducers disposed in a segment of each of the sensor rings extend in a circumferential direction of a respective sensor ring on at least a subsection of a circumference of the respective sensor ring. An ultrasound test pulse is injected into the test body. Measured values of first and second echo signals are evaluated to determine at least one of a location or an orientation of a fault in the test body.
Abstract:
A method for the non-destructive inspection of a test body using ultrasound is disclosed, in which at least one ultrasonic transducer couples ultrasonic waves into the test body and ultrasonic waves reflected inside the test body are received by ultrasonic transducers and converted into ultrasonic signals, which form the basis of the non-destructive inspection.
Abstract:
In a method and device for ultrasonic testing of a workpiece, a multiplicity of ultrasonic testing pulses are launched into the workpiece from a test surface thereof. At least two ultrasonic testing pulses are launched into the workpiece to be tested at launching points that are spaced apart from one another by a test step width measured along the test surface. A single measured value (Ī) assigned to a local point located in the workpiece is calculated on the basis of the received signals assigned to the at least two ultrasonic testing pulses.
Abstract:
A method for an imaging ultrasonic inspection of a three-dimensional workpiece, in which ultrasonic waves are coupled into the workpiece with at least one ultrasonic transducer and ultrasonic waves reflected within the workpiece are received by ultrasonic transducers and converted into ultrasonic signals forming the basis of the non-destructive imaging ultrasonic inspection.
Abstract:
A method for an imaging ultrasonic inspection of a three-dimensional workpiece, in which ultrasonic waves are coupled into the workpiece with at least one ultrasonic transducer and ultrasonic waves reflected within the workpiece are received by ultrasonic transducers and converted into ultrasonic signals forming the basis of the non-destructive imaging ultrasonic inspection.
Abstract:
A method for the non-destructive inspection of a test body using ultrasound is disclosed, in which at least one ultrasonic transducer couples ultrasonic waves into the test body and ultrasonic waves reflected inside the test body are received by ultrasonic transducers and converted into ultrasonic signals, which form the basis of the non-destructive inspection.
Abstract:
In a method and device for ultrasonic testing of a workpiece, a multiplicity of ultrasonic testing pulses are launched into the workpiece from a test surface thereof. At least two ultrasonic testing pulses are launched into the workpiece to be tested at launching points that are spaced apart from one another by a test step width measured along the test surface. A single measured value (Ī) assigned to a local point located in the workpiece is calculated on the basis of the received signals assigned to the at least two ultrasonic testing pulses.
Abstract:
A method is described for nondestructive testing of a test body having at least one acoustically anisotropic material area using ultrasound. The method of the invention includes ascertaining or providing directionally specific sound propagation properties which describe an acoustically anisotropic material area; coupling ultrasonic waves into the acoustically anisotropic material area of the test body; receiving ultrasonic waves reflected from an interior of the test body using ultrasonic transducers; and analyzing ultrasonic signals generated by the ultrasonic transducers so that an analysis is performed which is directionally-selective on a basis of directionally-specific sound propagation properties of the anisotropic material.