摘要:
A method, apparatus and system is disclosed herein for wireless transmission based on MU-MIMO and two-way training. In one embodiment, the system comprises a set of K receivers and at least one transmitter having a set of N transmit antennas, where the transmitter is operable to precode a signal for downlink transmission to each receiver in the set of K receivers based on multi-user MIMO using precoding derived based on two-way channel training between the set of K receivers and the set of N transmit antennas
摘要:
A method for sparse channel estimation in MIMO OFDM systems with a plurality of subchannels having the same sparsity structure is presented. The inventive method comprises initializing a plurality of residual vectors and observation generating matrices modeling the channel, sending a pilot signal for each subcarrier, converting the pilot signals to tap positions, detecting an optimal tap position, updating the residual vectors by removing the one residual vector having the optimal tap position, updating the generating matrices in accordance with the optimal residual vector, calculating weighted residuals based on the updated residual vectors, and repeating the steps, except initializing, until a stopping condition is met, wherein the updated observation matrices estimate the sparse channel. In one embodiment, the observation generating matrices are omitted. In one embodiment, multiple vectors are removed during one iteration. Pilot placement and pilot allocation techniques are presented to optimize the method.
摘要:
A method for sparse channel estimation in MIMO OFDM systems with a plurality of subchannels having the same sparsity structure is presented. The inventive method comprises initializing a plurality of residual vectors and observation generating matrices modeling the channel, sending a pilot signal for each subcarrier, converting the pilot signals to tap positions, detecting an optimal tap position, updating the residual vectors by removing the one residual vector having the optimal tap position, updating the generating matrices in accordance with the optimal residual vector, calculating weighted residuals based on the updated residual vectors, and repeating the steps, except initializing, until a stopping condition is met, wherein the updated observation matrices estimate the sparse channel. In one embodiment, the observation generating matrices are omitted. In one embodiment, multiple vectors are removed during one iteration. Pilot placement and pilot allocation techniques are presented to optimize the method.