Abstract:
An apparatus and method perform Transmit Power Control and Dynamic Frequency Selection (TPC/DFS) during a movement of a Base Station (BS). A network environment around the mobile BS is modeled. Based on the modeling result, a TPC/DFS operation scheme that is most suitable to the mobile BS is selected.
Abstract:
An apparatus and method for power control of a mobile BS of variable backbone capacity. The method includes determining a link state and capacity of a backbone of the BS, and determining a link state and service capacity between the BS and a mobile communication terminal. The method also includes, if the capacity of the backbone is less than the service capacity, setting the backbone capacity similar to the service capacity by lowering a transmit power of the BS by a predefined value.
Abstract:
An UpLink (UL) scheduling method and apparatus considering a characteristic of a power amplifier in a mobile communication terminal are provided. The UL scheduling method includes calculating a packet transmission time, which minimizes energy consumed in packet transmission, by using a Direct Current (DC) voltage used in a power amplifier for signal amplification and by using nonlinear amplification efficiency; and scheduling UL data by using the calculated packet transmission time.
Abstract:
An apparatus and method perform Transmit Power Control and Dynamic Frequency Selection (TPC/DFS) during a movement of a Base Station (BS). A network environment around the mobile BS is modeled. Based on the modeling result, a TPC/DFS operation scheme that is most suitable to the mobile BS is selected.
Abstract:
An UpLink (UL) scheduling method and apparatus considering a characteristic of a power amplifier in a mobile communication terminal are provided. The UL scheduling method includes calculating a packet transmission time, which minimizes energy consumed in packet transmission, by using a Direct Current (DC) voltage used in a power amplifier for signal amplification and by using nonlinear amplification efficiency; and scheduling UL data by using the calculated packet transmission time.
Abstract:
The present invention relates to a power saving in a wireless local area network including a plurality of access points providing at least one mobile station in each access point cell boundary with access service, the mobile station transits between an active mode and an idle mode. The power saving method includes grouping the access points into at least one paging group with a paging group boundary; determining if the a mobile station is in the idle mode in which the mobile station switches between an awake state and a doze state every predetermined time interval, or the active mode in which the mobile station is in the awake mode; and if the mobile station is in the idle mode enabling an idle handoff which occurs only when the mobile station crosses the paging group boundary. In the present invention, the handoff occurs when the mobile terminal crosses the paging group boundary but not the access point cell in the idle mode, resulting in reduction of power consumption.
Abstract:
An apparatus and method for power control of a mobile BS of variable backbone capacity. The method includes determining a link state and capacity of a backbone of the BS, and determining a link state and service capacity between the BS and a mobile communication terminal. The method also includes, if the capacity of the backbone is less than the service capacity, setting the backbone capacity similar to the service capacity by lowering a transmit power of the BS by a predefined value.
Abstract:
The present invention relates to a power saving in a wireless local area network including a plurality of access points providing at least one mobile station in each access point cell boundary with access service, the mobile station transits between an active mode and an idle mode. The power saving method includes grouping the access points into at least one paging group with a paging group boundary; determining if the a mobile station is in the idle mode in which the mobile station switches between an awake state and a doze state every predetermined time interval, or the active mode in which the mobile station is in the awake mode; and if the mobile station is in the idle mode enabling an idle handoff which occurs only when the mobile station crosses the paging group boundary. In the present invention, the handoff occurs when the mobile terminal crosses the paging group boundary but not the access point cell in the idle mode, resulting in reduction of power consumption.